Bert A 't Hart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2411915/publications.pdf

Version: 2024-02-01

		172457	206112
58	2,457	29	48
papers	citations	h-index	g-index
F.O.	50	50	2206
59	59	59	2396
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Transfer of Central Nervous System Autoantigens and Presentation in Secondary Lymphoid Organs. Journal of Immunology, 2002, 169, 5415-5423.	0.8	256
2	Histopathological Characterization of Magnetic Resonance Imaging-Detectable Brain White Matter Lesions in a Primate Model of Multiple Sclerosis. American Journal of Pathology, 1998, 153, 649-663.	3.8	145
3	EAE: imperfect but useful models of multiple sclerosis. Trends in Molecular Medicine, 2011, 17, 119-125.	6.7	145
4	Myelin/Oligodendrocyte Glycoprotein-Induced Autoimmune Encephalomyelitis in Common Marmosets: The Encephalitogenic T Cell Epitope pMOG24–36 Is Presented by a Monomorphic MHC Class II Molecule. Journal of Immunology, 2000, 165, 1093-1101.	0.8	123
5	Surgical excision of CNSâ€draining lymph nodes reduces relapse severity in chronicâ€relapsing experimental autoimmune encephalomyelitis. Journal of Pathology, 2009, 217, 543-551.	4.5	112
6	The marmoset monkey: a multi-purpose preclinical and translational model of human biology and disease. Drug Discovery Today, 2012, 17, 1160-1165.	6.4	97
7	Induction of Progressive Demyelinating Autoimmune Encephalomyelitis in Common Marmoset Monkeys Using MOG ₃₄₋₅₆ Peptide in Incomplete Freund Adjuvant. Journal of Neuropathology and Experimental Neurology, 2010, 69, 372-385.	1.7	74
8	Native myelin oligodendrocyte glycoprotein promotes severe chronic neurological disease and demyelination in Biozzi ABH mice. European Journal of Immunology, 2005, 35, 1311-1319.	2.9	64
9	Fast Progression of Recombinant Human Myelin/Oligodendrocyte Glycoprotein (MOG)-Induced Experimental Autoimmune Encephalomyelitis in Marmosets Is Associated with the Activation of MOG34–56-Specific Cytotoxic T Cells. Journal of Immunology, 2008, 180, 1326-1337.	0.8	61
10	Modulation of Multiple Sclerosis and Its Animal Model Experimental Autoimmune Encephalomyelitis by Food and Gut Microbiota. Frontiers in Immunology, 2017, 8, 1081.	4.8	61
11	Cytomegalovirus: a culprit or protector in multiple sclerosis?. Trends in Molecular Medicine, 2015, 21, 16-23.	6.7	60
12	Survival and Functionality of Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes in a Nonhuman Primate Model for Multiple Sclerosis. Stem Cells Translational Medicine, 2016, 5, 1550-1561.	3.3	57
13	Multiple sclerosis – a response-to-damage model. Trends in Molecular Medicine, 2009, 15, 235-244.	6.7	54
14	Late B Cell Depletion with a Human Anti-Human CD20 $\lg G1^{\circ}$ Monoclonal Antibody Halts the Development of Experimental Autoimmune Encephalomyelitis in Marmosets. Journal of Immunology, 2010, 185, 3990-4003.	0.8	53
15	Unravelling the Tâ€cellâ€mediated autoimmune attack on CNS myelin in a new primate EAE model induced with MOG _{34–56} peptide in incomplete adjuvant. European Journal of Immunology, 2012, 42, 217-227.	2.9	52
16	EBV Infection Empowers Human B Cells for Autoimmunity: Role of Autophagy and Relevance to Multiple Sclerosis. Journal of Immunology, 2017, 199, 435-448.	0.8	52
17	The human CMV-UL86 peptide 981–1003 shares a crossreactive T-cell epitope with the encephalitogenic MOG peptide 34–56, but lacks the capacity to induce EAE in rhesus monkeys. Journal of Neuroimmunology, 2007, 182, 135-152.	2.3	51
18	Induction of Experimental Autoimmune Encephalomyelitis With Recombinant Human Myelin Oligodendrocyte Glycoprotein in Incomplete Freund's Adjuvant in Three Non-human Primate Species. Journal of NeuroImmune Pharmacology, 2013, 8, 1251-1264.	4.1	49

#	Article	IF	CITATIONS
19	Bacterial Peptidoglycan as a Driver of Chronic Brain Inflammation. Trends in Molecular Medicine, 2020, 26, 670-682.	6.7	49
20	The Primate EAE Model Points at EBV-Infected B Cells as a Preferential Therapy Target in Multiple Sclerosis. Frontiers in Immunology, 2013, 4, 145.	4.8	48
21	Autoimmunity Against Myelin Oligodendrocyte Glycoprotein Is Dispensable for the Initiation Although Essential for the Progression of Chronic Encephalomyelitis in Common Marmosets. Journal of Neuropathology and Experimental Neurology, 2008, 67, 326-340.	1.7	47
22	The primate autoimmune encephalomyelitis model; a bridge between mouse and man. Annals of Clinical and Translational Neurology, 2015, 2, 581-593.	3.7	47
23	Apocynin, a Low Molecular Oral Treatment for Neurodegenerative Disease. BioMed Research International, 2014, 2014, 1-6.	1.9	45
24	Lymphocryptovirus Infection of Nonhuman Primate B Cells Converts Destructive into Productive Processing of the Pathogenic CD8 T Cell Epitope in Myelin Oligodendrocyte Glycoprotein. Journal of Immunology, 2016, 197, 1074-1088.	0.8	41
25	Axonâ€Myelin Unit Blistering as Early Event in <scp>MS</scp> Normal Appearing White Matter. Annals of Neurology, 2021, 89, 711-725.	5.3	39
26	Antibodies Against Human BLyS and APRIL Attenuate EAE Development in Marmoset Monkeys. Journal of NeuroImmune Pharmacology, 2012, 7, 557-570.	4.1	34
27	B-Cell Depletion Attenuates White and Gray Matter Pathology in Marmoset Experimental Autoimmune Encephalomyelitis. Journal of Neuropathology and Experimental Neurology, 2011, 70, 992-1005.	1.7	33
28	An Overview of Models, Methods, and Reagents Developed for Translational Autoimmunity Research in the Common Marmoset (<i>Callithrix jacchus</i>). Experimental Animals, 2013, 62, 159-171.	1.1	33
29	B-Cell Depletion Abrogates T Cell-Mediated Demyelination in an Antibody-Nondependent Common Marmoset Experimental Autoimmune Encephalomyelitis Model. Journal of Neuropathology and Experimental Neurology, 2012, 71, 716-728.	1.7	32
30	The Different Clinical Effects of Anti-BLyS, Anti-APRIL and Anti-CD20 Antibodies Point at a Critical Pathogenic Role of \hat{I}^3 -Herpesvirus Infected B Cells in the Marmoset EAE Model. Journal of Neurolmmune Pharmacology, 2013, 8, 727-738.	4.1	32
31	Immune profile of an atypical EAE model in marmoset monkeys immunized with recombinant human myelin oligodendrocyte glycoprotein in incomplete Freund's adjuvant. Journal of Neuroinflammation, 2015, 12, 169.	7.2	30
32	Targeted Diet Modification Reduces Multiple Sclerosis–like Disease in Adult Marmoset Monkeys from an Outbred Colony. Journal of Immunology, 2018, 201, 3229-3243.	0.8	29
33	CD20+ B Cell Depletion Alters T Cell Homing. Journal of Immunology, 2014, 192, 4242-4253.	0.8	24
34	Embracing Complexity beyond Systems Medicine: A New Approach to Chronic Immune Disorders. Frontiers in Immunology, 2016, 7, 587.	4.8	24
35	The common marmoset as an indispensable animal model for immunotherapy development in multiple sclerosis. Drug Discovery Today, 2016, 21, 1200-1205.	6.4	22
36	Multiple sclerosis is linked to MAPKERK overactivity in microglia. Journal of Molecular Medicine, 2021, 99, 1033-1042.	3.9	22

#	Article	IF	CITATIONS
37	Blockade of CD127 Exerts a Dichotomous Clinical Effect in Marmoset Experimental Autoimmune Encephalomyelitis. Journal of NeuroImmune Pharmacology, 2016, 11, 73-83.	4.1	20
38	Mechanistic underpinning of an inside–out concept for autoimmunity in multiple sclerosis. Annals of Clinical and Translational Neurology, 2021, 8, 1709-1719.	3.7	20
39	Chronic autoimmune-mediated inflammation: a senescent immune response to injury. Drug Discovery Today, 2013, 18, 372-379.	6.4	19
40	A B Cell-Driven Autoimmune Pathway Leading to Pathological Hallmarks of Progressive Multiple Sclerosis in the Marmoset Experimental Autoimmune Encephalomyelitis Model. Frontiers in Immunology, 2017, 8, 804.	4.8	19
41	The translational value of non-human primates in preclinical research on infection and immunopathology. European Journal of Pharmacology, 2015, 759, 69-83.	3.5	18
42	Analysis of the crossâ€talk of Epstein–Barr virusâ€infected B cells with T cells in the marmoset. Clinical and Translational Immunology, 2017, 6, e127.	3.8	18
43	Reverse translation of failed treatments can help improving the validity of preclinical animal models. European Journal of Pharmacology, 2015, 759, 14-18.	3.5	13
44	Intradermal vaccination prevents anti-MOG autoimmune encephalomyelitis in macaques. EBioMedicine, 2019, 47, 492-505.	6.1	13
45	Tissue Transglutaminase in Marmoset Experimental Multiple Sclerosis: Discrepancy between White and Grey Matter. PLoS ONE, 2014, 9, e100574.	2.5	13
46	Editorial: "Inside-Out―vs "Outside-In―Paradigms in Multiple Sclerosis Etiopathogenesis. Frontiers in Cellular Neuroscience, 2021, 15, 666529.	3.7	12
47	Severe oxidative stress in an acute inflammatory demyelinating model in the rhesus monkey. PLoS ONE, 2017, 12, e0188013.	2.5	12
48	Amyloid-like Behavior of Site-Specifically Citrullinated Myelin Oligodendrocyte Protein (MOG) Peptide Fragments inside EBV-Infected B-Cells Influences Their Cytotoxicity and Autoimmunogenicity. Biochemistry, 2019, 58, 763-775.	2.5	11
49	Induction of Encephalitis in Rhesus Monkeys Infused with Lymphocryptovirus-Infected B-Cells Presenting MOG34–56 Peptide. PLoS ONE, 2013, 8, e71549.	2.5	11
50	Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biology, 2019, 6, 17-58.	1.0	11
51	Reverse Translation for Assessment of Confidence in Animal Models of Multiple Sclerosis for Drug Discovery. Clinical Pharmacology and Therapeutics, 2018, 103, 262-270.	4.7	9
52	Multiple sclerosis and drug discovery: A work of translation. EBioMedicine, 2021, 68, 103392.	6.1	9
53	Nutritional and ecological perspectives of the interrelationships between diet and the gut microbiome in multiple sclerosis: Insights from marmosets. IScience, 2021, 24, 102709.	4.1	9
54	Merits and complexities of modeling multiple sclerosis in non-human primates: implications for drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 387-397.	5.0	8

#	Article	IF	CITATIONS
55	New drug discovery strategies for rheumatoid arthritis: a niche for nonhuman primate models to address systemic complications in inflammatory arthritis. Expert Opinion on Drug Discovery, 2012, 7, 315-325.	5.0	5
56	A Tolerogenic Role of Cathepsin G in a Primate Model of Multiple Sclerosis: Abrogation by Epstein–Barr Virus Infection. Archivum Immunologiae Et Therapiae Experimentalis, 2020, 68, 21.	2.3	5
57	The Forgotten Brother: The Innate-like B1 Cell in Multiple Sclerosis. Biomedicines, 2022, 10, 606.	3.2	4
58	Recombinant myelin oligodendrocyte glycoprotein quality modifies evolution of experimental autoimmune encephalitis in macaques. Laboratory Investigation, 2021, 101, 1513-1522.	3.7	1