Jay D Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2411878/publications.pdf

Version: 2024-02-01

7551 6454 27,461 222 77 157 citations h-index g-index papers 248 248 248 18358 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic signatures underlying the oogenesis of the ectoparasitic mite Varroa destructor on its new host Apis mellifera. Journal of Advanced Research, 2023, 44, 1-11.	4.4	2
2	Honeybee intestines retain low yeast titers, but no bacterial mutualists, at emergence. Yeast, 2022, 39, 95-107.	0.8	11
3	Beeporter: Tools for highâ€throughput analyses of pollinatorâ€virus infections. Molecular Ecology Resources, 2022, 22, 978-987.	2.2	9
4	Punch in the gut: parasite tolerance of phytochemicals reflects host diet. Environmental Microbiology, 2022, 24, 1805-1817.	1.8	5
5	Can floral nectars reduce transmission of Leishmania?. PLoS Neglected Tropical Diseases, 2022, 16, e0010373.	1.3	2
6	Phylogenetic Analysis of Small Hive Beetles From Native to Introduced Populations. Frontiers in Genetics, 2022, 13, .	1.1	1
7	Transcriptomic analysis suggests candidate genes for hygienic behavior in African-derived Apis mellifera honeybees. Apidologie, 2021, 52, 447-462.	0.9	3
8	RNA Interference-Mediated Knockdown of Genes Encoding Spore Wall Proteins Confers Protection against Nosema ceranae Infection in the European Honey Bee, Apis mellifera. Microorganisms, 2021, 9, 505.	1.6	13
9	Transferrin-mediated iron sequestration suggests a novel therapeutic strategy for controlling Nosema disease in the honey bee, Apis mellifera. PLoS Pathogens, 2021, 17, e1009270.	2.1	22
10	Pupal cannibalism by worker honey bees contributes to the spread of deformed wing virus. Scientific Reports, 2021, 11, 8989.	1.6	22
11	Genome and Evolutionary Analysis of Nosema ceranae: A Microsporidian Parasite of Honey Bees. Frontiers in Microbiology, 2021, 12, 645353.	1.5	12
12	Pesticides in honey bee colonies: Establishing a baseline for real world exposure over seven years in the USA. Environmental Pollution, 2021, 279, 116566.	3.7	58
13	A novel method for the detection and diagnosis of virus infections in honey bees. Journal of Virological Methods, 2021, 293, 114163.	1.0	6
14	Microbial communities associated with honey bees in Brazil and in the United States. Brazilian Journal of Microbiology, 2021, 52, 2097-2115.	0.8	8
15	The COLOSS BEEBOOK evolves: hive products, †omics research and Eastern honey bees, Apis cerana. Journal of Apicultural Research, 2021, 60, 1-3.	0.7	2
16	Honey Bee Habitat Sharing Enhances Gene Flow of the Parasite Nosema ceranae. Microbial Ecology, 2021, , 1.	1.4	3
17	Validation of Diagnostic Methods for European Foulbrood on Commercial Honey Bee Colonies in the United States. Journal of Insect Science, 2021, 21, .	0.6	6
18	Multi-tiered analyses of honey bees that resist or succumb to parasitic mites and viruses. BMC Genomics, 2021, 22, 720.	1.2	8

#	Article	IF	Citations
19	Comparative genomics suggests local adaptations in the invasive small hive beetle. Ecology and Evolution, 2021, 11, 15780-15791.	0.8	8
20	Impacts of Diverse Natural Products on Honey Bee Viral Loads and Health. Applied Sciences (Switzerland), 2021, 11, 10732.	1.3	11
21	Hot and sour: parasite adaptations to honeybee body temperature and pH. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211517.	1.2	6
22	Haplotype Analysis of Varroa destructor and Deformed Wing Virus Using Long Reads. Frontiers in Insect Science, $2021,1,$	0.9	0
23	Colony-Level Effects of Amygdalin on Honeybees and Their Microbes. Insects, 2020, 11, 783.	1.0	6
24	Targeting the honey bee gut parasite Nosema ceranae with siRNA positively affects gut bacteria. BMC Microbiology, 2020, 20, 258.	1.3	11
25	Co-incubation of dsRNA reduces proportion of viable spores of <i>Ascosphaera apis</i> , a honey bee fungal pathogen. Journal of Apicultural Research, 2020, 59, 791-799.	0.7	1
26	Gene Expression and Functional Analyses of Odorant Receptors in Small Hive Beetles (Aethina tumida). International Journal of Molecular Sciences, 2020, 21, 4582.	1.8	4
27	Aberrant cocoons found on honey bee comb cells are found to be <i>Osmia cornifrons</i> (Radoszkowski) (Hymenoptera: Megachillidae). Journal of Apicultural Research, 2020, 59, 1000-1004.	0.7	0
28	Distribution of recently identified bee-infecting viruses in managed honey bee (Apis mellifera) populations in the USA. Apidologie, 2020, 51, 736-745.	0.9	9
29	Development of a Honey Bee RNA Virus Vector Based on the Genome of a Deformed Wing Virus. Viruses, 2020, 12, 374.	1.5	23
30	Varroa destructor mites vector and transmit pathogenic honey bee viruses acquired from an artificial diet. PLoS ONE, 2020, 15, e0242688.	1.1	25
31	An updated genetic marker for detection of Lake Sinai Virus and metagenetic applications. PeerJ, 2020, 8, e9424.	0.9	6
32	Selection for barriers between honey bees and a devastating parasite. Molecular Ecology, 2019, 28, 2955-2957.	2.0	5
33	Draft Genome Sequence of the Yeast Kodamaea ohmeri , a Symbiont of the Small Hive Beetle. Microbiology Resource Announcements, 2019, 8, .	0.3	3
34	Shared and unique microbes between Small hive beetles (<i>Aethina tumida</i>) and their honey bee hosts. MicrobiologyOpen, 2019, 8, e899.	1.2	14
35	Dynamic evolution in the key honey bee pathogen deformed wing virus: Novel insights into virulence and competition using reverse genetics. PLoS Biology, 2019, 17, e3000502.	2.6	75
36	Natural Product Medicines for Honey Bees: Perspective and Protocols. Insects, 2019, 10, 356.	1.0	32

#	Article	IF	CITATIONS
37	Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner. Scientific Reports, 2019, 9, 12445.	1.6	79
38	Effects of a Resident Yeast from the Honeybee Gut on Immunity, Microbiota, and Nosema Disease. Insects, 2019, 10, 296.	1.0	36
39	Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites. Communications Biology, 2019, 2, 357.	2.0	55
40	Pollen reverses decreased lifespan, altered nutritional metabolism, and suppressed immunity in honey bees (<i>Apis mellifera</i>) treated with antibiotics. Journal of Experimental Biology, 2019, 222, .	0.8	26
41	A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genomics, 2019, 20, 275.	1.2	171
42	The Phylogeny and Pathogenesis of Sacbrood Virus (SBV) Infection in European Honey Bees, Apis mellifera. Viruses, 2019, 11, 61.	1.5	28
43	The Dynamics of Deformed Wing Virus Concentration and Host Defensive Gene Expression after Varroa Mite Parasitism in Honey Bees, Apis mellifera. Insects, 2019, 10, 16.	1.0	18
44	Dynamic Changes of Gut Microbial Communities of Bumble Bee Queens through Important Life Stages. MSystems, 2019, 4, .	1.7	31
45	<i>Dicer</i> regulates <i>Nosema ceranae</i> proliferation in honeybees. Insect Molecular Biology, 2019, 28, 74-85.	1.0	14
46	Comparative susceptibility and immune responses of Asian and European honey bees to the American foulbrood pathogen, <i>Paenibacillus larvae</i> . Insect Science, 2019, 26, 831-842.	1.5	17
47	Genetics and physiology of Varroa mites. Current Opinion in Insect Science, 2018, 26, 130-135.	2.2	38
48	Genomic and transcriptomic analysis of the Asian honeybee Apis cerana provides novel insights into honeybee biology. Scientific Reports, 2018, 8, 822.	1.6	68
49	Acute bee paralysis virus occurs in the Asian honey bee Apis cerana and parasitic mite Tropilaelaps mercedesae. Journal of Invertebrate Pathology, 2018, 151, 131-136.	1.5	21
50	Genome of the small hive beetle (<i>Aethina tumida</i> , Coleoptera: Nitidulidae), a worldwide parasite of social bee colonies, provides insights into detoxification and herbivory. GigaScience, 2018, 7, .	3.3	49
51	Extracts of Polypore Mushroom Mycelia Reduce Viruses in Honey Bees. Scientific Reports, 2018, 8, 13936.	1.6	36
52	Interactions Among Host–Parasite MicroRNAs During Nosema ceranae Proliferation in Apis mellifera. Frontiers in Microbiology, 2018, 9, 698.	1.5	12
53	Silencing of Apis mellifera dorsal genes reveals their role in expression of the antimicrobial peptide defensinâ€1. Insect Molecular Biology, 2018, 27, 577-589.	1.0	31
54	Nosemosis control in European honey bees <i>Apis mellifera</i> by silencing the gene encoding <i>Nosema ceranae</i> polar tube protein 3. Journal of Experimental Biology, 2018, 221, .	0.8	29

#	Article	IF	Citations
55	A Varroa destructor protein atlas reveals molecular underpinnings of developmental transitions and sexual differentiation. Molecular and Cellular Proteomics, 2017, 16, 2125-2137.	2.5	35
56	Nectar and Pollen Phytochemicals Stimulate Honey Bee (Hymenoptera: Apidae) Immunity to Viral Infection. Journal of Economic Entomology, 2017, 110, 1959-1972.	0.8	69
57	Spore load and immune response of honey bees naturally infected by Nosema ceranae. Parasitology Research, 2017, 116, 3265-3274.	0.6	27
58	Recent spread of Varroa destructor virus-1, a honey bee pathogen, in the United States. Scientific Reports, 2017, 7, 17447.	1.6	108
59	Multilocus sequence typing, biochemical and antibiotic resistance characterizations reveal diversity of North American strains of the honey bee pathogen Paenibacillus larvae. PLoS ONE, 2017, 12, e0176831.	1.1	28
60	New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee's vulnerability to Nosema infection. PLoS ONE, 2017, 12, e0187505.	1.1	79
61	Effective Silencing of Dicer Decreases Spore Load of the Honey Bee Parasite Nosema ceranae. Fungal Genomics & Biology, 2016, 06, .	0.4	12
62	Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees. PLoS ONE, 2016, 11, e0147549.	1.1	23
63	Species-specific diagnostics of Apis mellifera trypanosomatids: A nine-year survey (2007–2015) for trypanosomatids and microsporidians in Serbian honey bees. Journal of Invertebrate Pathology, 2016, 139, 6-11.	1.5	65
64	Differential gene expression in Varroa jacobsoni mites following a host shift to European honey bees (Apis mellifera). BMC Genomics, 2016, 17, 926.	1.2	14
65	Ligand selectivity in tachykinin and natalisin neuropeptidergic systems of the honey bee parasitic mite Varroa destructor. Scientific Reports, 2016, 6, 19547.	1.6	10
66	Multiyear survey targeting disease incidence in US honey bees. Apidologie, 2016, 47, 325-347.	0.9	143
67	The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions. MBio, 2016, 7, e02164-15.	1.8	215
68	Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (<i>nkd</i>) Improves Host Immune Function and Reduces Nosema ceranae Infections. Applied and Environmental Microbiology, 2016, 82, 6779-6787.	1.4	57
69	Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9345-9350.	3.3	184
70	Transcriptomic and functional resources for the small hive beetle Aethina tumida, a worldwide parasite of honey bees. Genomics Data, 2016, 9, 97-99.	1.3	12
71	Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nature Communications, 2016, 7, 10165.	5.8	184
72	Identification of microRNA-like small RNAs from fungal parasite Nosema ceranae. Journal of Invertebrate Pathology, 2016, 133, 107-109.	1.5	21

#	Article	IF	Citations
73	Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. Journal of Insect Physiology, 2016, 89, 1-8.	0.9	126
74	Agricultural applications of insect ecological genomics. Current Opinion in Insect Science, 2016, 13, 61-69.	2.2	23
75	Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees. PLoS ONE, 2016, 11, e0148242.	1.1	25
76	Differential gene expression in Varroa jacobsoni mites following a host shift to European honey bees (Apis mellifera). , 2015 , , .		0
77	Honey bee microRNAs respond to infection by the microsporidian parasite Nosema ceranae. Scientific Reports, 2015, 5, 17494.	1.6	18
78	Characterization of Two Species of Trypanosomatidae from the Honey Bee <i>Apis mellifera</i> Crithidia mellificae Langridge and McGhee, and <i>Lotmaria passim</i> n. gen., n. sp Journal of Eukaryotic Microbiology, 2015, 62, 567-583.	0.8	152
79	Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor. Viruses, 2015, 7, 3586-3602.	1.5	65
80	The Apis mellifera Filamentous Virus Genome. Viruses, 2015, 7, 3798-3815.	1.5	75
81	A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biology, 2015, 16, 83.	3.8	130
82	Two gut community enterotypes recur in diverse bumblebee species. Current Biology, 2015, 25, R652-R653.	1.8	62
83	Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. Journal of Invertebrate Pathology, 2015, 130, 21-27.	1.5	65
84	Editorial Overview: Social insects: From the lab to the landscape - translational approaches to pollinator health. Current Opinion in Insect Science, 2015, 10, vii-ix.	2.2	3
85	Metatranscriptomic analyses of honey bee colonies. Frontiers in Genetics, 2015, 6, 100.	1.1	35
86	Hologenome theory and the honey bee pathosphere. Current Opinion in Insect Science, 2015, 10, 1-7.	2.2	57
87	The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76.	3.8	330
88	Genomic signatures of evolutionary transitions from solitary to group living. Science, 2015, 348, 1139-1143.	6.0	357
89	Characterization of gut bacteria at different developmental stages of Asian honey bees, Apis cerana. Journal of Invertebrate Pathology, 2015, 127, 110-114.	1.5	41
90	The i5k Workspace@NALâ€"enabling genomic data access, visualization and curation of arthropod genomes. Nucleic Acids Research, 2015, 43, D714-D719.	6.5	142

#	Article	IF	Citations
91	Three Halloween genes from the Varroa mite, <i>Varroa destructor </i> (Anderson & Description of their expression during reproduction. Insect Molecular Biology, 2015, 24, 277-292.	1.0	28
92	Israeli Acute Paralysis Virus: Epidemiology, Pathogenesis and Implications for Honey Bee Health. PLoS Pathogens, 2014, 10, e1004261.	2.1	173
93	Evaluation of Cage Designs and Feeding Regimes for Honey Bee (Hymenoptera: Apidae) Laboratory Experiments. Journal of Economic Entomology, 2014, 107, 54-62.	0.8	33
94	Effects of host age on susceptibility to infection and immune gene expression in honey bee queens (Apis mellifera) inoculated with Nosema ceranae. Apidologie, 2014, 45, 451-463.	0.9	19
95	Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics, 2014, 15, 86.	1.2	375
96	Expression of insulin/insulinâ€like signalling and <scp>TOR</scp> pathway genes in honey bee caste determination. Insect Molecular Biology, 2014, 23, 113-121.	1.0	56
97	Honey bee colonies act as reservoirs for two <i>Spiroplasma</i> facultative symbionts and incur complex, multiyear infection dynamics. MicrobiologyOpen, 2014, 3, 341-355.	1.2	61
98	EXAMINING THE ROLE OF <i>foraging</i> AND <i>malvolio</i> IN HOSTâ€FINDING BEHAVIOR IN THE HONEY BEE PARASITE, <i>Varroa destructor</i> (ANDERSON & TRUEMAN). Archives of Insect Biochemistry and Physiology, 2014, 85, 61-75.	0.6	11
99	Reply to "Conclusive Evidence of Replication of a Plant Virus in Honeybees Is Lacking― MBio, 2014, 5, e01250-14.	1.8	4
100	Systemic Spread and Propagation of a Plant-Pathogenic Virus in European Honeybees, Apis mellifera. MBio, 2014, 5, e00898-13.	1.8	81
101	Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing. BMC Genomics, 2013, 14, 154.	1.2	59
102	Genomic organization and reproductive regulation of a large lipid transfer protein in the varroa mite, <scp><i>V</i></scp> <i>arroa destructor</i> Anderson & <scp>T</scp> rueman). Insect Molecular Biology, 2013, 22, 505-522.	1.0	10
103	Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions. BMC Genomics, 2013, 14, 451.	1.2	61
104	Susceptibility of four different honey bee species to Nosema ceranae. Veterinary Parasitology, 2013, 193, 260-265.	0.7	35
105	Variable induction of vitellogenin genes in the varroa mite, <scp><i>V</i></scp> <i>arroa destructor</i> (<scp>A</scp> nderson & <scp>T</scp> rueman), by the honeybee, <i>Apis mellifera</i> L, host and its environment. Insect Molecular Biology, 2013, 22, 88-103.	1.0	31
106	Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Developmental and Comparative Immunology, 2013, 40, 300-310.	1.0	96
107	Standard methods for molecular research in <i>Apis mellifera</i> . Journal of Apicultural Research, 2013, 52, 1-54.	0.7	150
108	Standard methods for small hive beetle research. Journal of Apicultural Research, 2013, 52, 1-32.	0.7	83

#	Article	IF	CITATIONS
109	Standard methods for American foulbrood research. Journal of Apicultural Research, 2013, 52, 1-28.	0.7	108
110	The i5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment. Journal of Heredity, 2013, 104, 595-600.	1.0	358
111	Transcriptional Response of Honey Bee Larvae Infected with the Bacterial Pathogen Paenibacillus larvae. PLoS ONE, 2013, 8, e65424.	1.1	43
112	In Vitro Infection of Pupae with Israeli Acute Paralysis Virus Suggests Disturbance of Transcriptional Homeostasis in Honey Bees (Apis mellifera). PLoS ONE, 2013, 8, e73429.	1.1	88
113	<i>Israeli acute paralysis virus</i> in Africanized honey bees in southeastern Brazilian Apiaries. Journal of Apicultural Research, 2012, 51, 282-284.	0.7	14
114	Dead or Alive: Deformed Wing Virus and Varroa destructor Reduce the Life Span of Winter Honeybees. Applied and Environmental Microbiology, 2012, 78, 981-987.	1.4	283
115	New evidence that deformed wing virus and black queen cell virus are multi-host pathogens. Journal of Invertebrate Pathology, 2012, 109, 156-159.	1.5	62
116	Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis. BMC Genomics, 2012, 13, 285.	1.2	36
117	Predictive Markers of Honey Bee Colony Collapse. PLoS ONE, 2012, 7, e32151.	1.1	291
118	Pathogen Webs in Collapsing Honey Bee Colonies. PLoS ONE, 2012, 7, e43562.	1.1	387
119	Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. Journal of Insect Physiology, 2012, 58, 613-620.	0.9	212
120	Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa) Tj ETQq0 0	0 rgBT/Ov	verlogk 10 Tf
121	Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. Journal of Insect Physiology, 2012, 58, 1090-1095.	0.9	138
122	The Prevalence of Parasites and Pathogens in Asian Honeybees Apis cerana in China. PLoS ONE, 2012, 7, e47955.	1.1	99
123	Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. Journal of General Virology, 2011, 92, 151-155.	1.3	211
124	Creating a Buzz About Insect Genomes. Science, 2011, 331, 1386-1386.	6.0	185
125	Bees brought to their knees: microbes affecting honey bee health. Trends in Microbiology, 2011, 19, 614-620.	3.5	312
126	Inclusive fitness theory and eusociality. Nature, 2011, 471, E1-E4.	13.7	339

#	Article	IF	Citations
127	Sampling and RNA quality for diagnosis of honey bee viruses using quantitative PCR. Journal of Virological Methods, 2011, 174, 150-152.	1.0	22
128	Paenibacillus larvae enolase as a virulence factor in honeybee larvae infection. Veterinary Microbiology, 2011, 147, 83-89.	0.8	28
129	Scientific note on PCR inhibitors in the compound eyes of honey bees, Apis mellifera. Apidologie, 2011, 42, 457-460.	0.9	39
130	Updated genome assembly and annotation of Paenibacillus larvae, the agent of American foulbrood disease of honey bees. BMC Genomics, 2011, 12, 450.	1.2	35
131	The presence of chronic bee paralysis virus infection in honey bees (<i>Apis mellifera</i> L.) in the USA. Journal of Apicultural Research, 2011, 50, 85-86.	0.7	3
132	Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera. Viruses, 2011, 3, 2425-2441.	1.5	81
133	A scientific note on <i>Varroa destructor</i> found in East Africa; threat or opportunity?. Apidologie, 2010, 41, 463-465.	0.9	51
134	Scientific note on mass collection and hatching of honey bee embryos. Apidologie, 2010, 41, 654-656.	0.9	6
135	Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics, 2010, 11, 602.	1.2	118
136	Secreted and immunogenic proteins produced by the honeybee bacterial pathogen, Paenibacillus larvae. Veterinary Microbiology, 2010, 141, 385-389.	0.8	20
137	Effective Gene Silencing in a Microsporidian Parasite Associated with Honeybee (<i>Apis mellifera</i>) Colony Declines. Applied and Environmental Microbiology, 2010, 76, 5960-5964.	1.4	100
138	Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biology, 2010, 8, e1000313.	2.6	913
139	Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. Journal of Apicultural Research, 2010, 49, 134-136.	0.7	249
140	Worldwide Diaspora of <i>Aethina tumida</i> (Coleoptera: Nitidulidae), a Nest Parasite of Honey Bees. Annals of the Entomological Society of America, 2010, 103, 671-677.	1.3	29
141	Weighing Risk Factors Associated With Bee Colony Collapse Disorder by Classification and Regression Tree Analysis. Journal of Economic Entomology, 2010, 103, 1517-1523.	0.8	119
142	Socialized medicine: Individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology, 2010, 103, S62-S72.	1.5	337
143	Honey bee disease overview. Journal of Invertebrate Pathology, 2010, 103, S2-S4.	1.5	55
144	Functional and Evolutionary Insights from the Genomes of Three Parasitoid <i>Nasonia</i> Science, 2010, 327, 343-348.	6.0	808

#	Article	IF	CITATIONS
145	Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biology, 2010, 11, R21.	13.9	389
146	Changes in transcript abundance relating to colony collapse disorder in honey bees (<i>Apis) Tj ETQq0 0 0 rgBT 106, 14790-14795.</i>	Overlock 1 3.3	10 Tf 50 707 196
147	Rapid Evolution of Immune Proteins in Social Insects. Molecular Biology and Evolution, 2009, 26, 1791-1801.	3.5	69
148	Colony Collapse Disorder: A Descriptive Study. PLoS ONE, 2009, 4, e6481.	1.1	933
149	Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation. BMC Genomics, 2009, 10, 607.	1.2	30
150	Morphological, Molecular, and Phylogenetic Characterization of <i>Nosema ceranae</i> , a Microsporidian Parasite Isolated from the European Honey Bee, <i>Apis mellifera</i> ¹ . Journal of Eukaryotic Microbiology, 2009, 56, 142-147.	0.8	139
151	RESIN COLLECTION AND SOCIAL IMMUNITY IN HONEY BEES. Evolution; International Journal of Organic Evolution, 2009, 63, 3016-3022.	1.1	256
152	"Entombed Pollen― A new condition in honey bee colonies associated with increased risk of colony mortality. Journal of Invertebrate Pathology, 2009, 101, 147-149.	1.5	68
153	Asymmetrical coexistence of Nosema ceranae and Nosema apis in honey bees. Journal of Invertebrate Pathology, 2009, 101, 204-209.	1.5	145
154	Characterization of secreted proteases of Paenibacillus larvae, potential virulence factors involved in honeybee larval infection. Journal of Invertebrate Pathology, 2009, 102, 129-132.	1.5	23
155	Genomic Analyses of the Microsporidian Nosema ceranae, an Emergent Pathogen of Honey Bees. PLoS Pathogens, 2009, 5, e1000466.	2.1	194
156	Microsatellite loci for the fungus <i>Ascosphaera apis</i> : cause of honey bee chalkbrood disease. Molecular Ecology Resources, 2009, 9, 855-858.	2.2	11
157	Bee cups: single-use cages for honey bee experiments. Journal of Apicultural Research, 2009, 48, 300-302.	0.7	88
158	Bee cups:single-use cages for honey bee experiments. Journal of Apicultural Research, 2009, , 300-302.	0.7	11
159	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	13.7	1,255
160	Microsatellite loci for the small hive beetle, Aethina tumida, a nest parasite of honey bees. Molecular Ecology Resources, 2008, 8, 698-700.	2.2	7
161	Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics, 2008, 9, 301.	1.2	163
162	Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. Journal of Invertebrate Pathology, 2008, 97, 186-188.	1.5	327

#	Article	IF	CITATIONS
163	Virus infections in Brazilian honey bees. Journal of Invertebrate Pathology, 2008, 99, 117-119.	1.5	79
164	More Toxin Tests Needed. Science, 2008, 319, 725-726.	6.0	9
165	Genetic Analysis of Israel Acute Paralysis Virus: Distinct Clusters Are Circulating in the United States. Journal of Virology, 2008, 82, 6209-6217.	1.5	88
166	Variation and Heritability in Immune Gene Expression by Diseased Honeybees. Journal of Heredity, 2007, 98, 195-201.	1.0	50
167	The influence of RNA integrity on the detection of honey bee viruses: molecular assessment of different sample storage methods. Journal of Apicultural Research, 2007, 46, 81-87.	0.7	22
168	A diagnostic genetic test for the honey bee tracheal mite, Acarapis woodi. Journal of Apicultural Research, 2007, 46, 195-197.	0.7	16
169	Comparative genomic analysis of the Tribolium immune system. Genome Biology, 2007, 8, R177.	13.9	271
170	Computational and transcriptional evidence for microRNAs in the honey bee genome. Genome Biology, 2007, 8, R97.	13.9	82
171	A Metagenomic Survey of Microbes in Honey Bee Colony Collapse Disorder. Science, 2007, 318, 283-287.	6.0	1,481
172	Dynamic evolution of the innate immune system in Drosophila. Nature Genetics, 2007, 39, 1461-1468.	9.4	400
173	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	13.7	1,886
174	Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera. Journal of Invertebrate Pathology, 2006, 92, 152-159.	1.5	257
175	Beepath: An ordered quantitative-PCR array for exploring honey bee immunity and disease. Journal of Invertebrate Pathology, 2006, 93, 135-139.	1.5	183
176	Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecology, 2006, 6, 4.	3.0	130
177	Diagnosis of American foulbrood in honey bees: a synthesis and proposed analytical protocols. Letters in Applied Microbiology, 2006, 43, 583-590.	1.0	74
178	Genomic and transcriptional analysis of protein heterogeneity of the honeybee venom allergen Api m 6. Insect Molecular Biology, 2006, 15, 577-581.	1.0	16
179	Proteomic analyses of male contributions to honey bee sperm storage and mating. Insect Molecular Biology, 2006, 15, 541-549.	1.0	118
180	Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Molecular Biology, 2006, 15, 597-602.	1.0	604

#	Article	IF	CITATIONS
181	Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 2006, 15, 645-656.	1.0	855
182	Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity. Insect Molecular Biology, 2006, 15, 603-614.	1.0	170
183	Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Molecular Biology, 2006, 15, 715-718.	1.0	92
184	Caste development and reproduction: a genome-wide analysis of hallmarks of insect eusociality. Insect Molecular Biology, 2006, 15, 703-714.	1.0	73
185	Sweetness and light: illuminating the honey bee genome. Insect Molecular Biology, 2006, 15, 535-539.	1.0	23
186	Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443, 931-949.	13.7	1,648
187	Beenome-mania: how will the honey bee genome project help beekeepers?. Bee World, 2005, 86, 25-26.	0.3	0
188	COLONY-LEVEL IMPACTS OF IMMUNE RESPONSIVENESS IN HONEY BEES, APIS MELLIFERA. Evolution; International Journal of Organic Evolution, 2005, 59, 2270-2274.	1.1	106
189	Conditional immune-gene suppression of honeybees parasitized by Varroa mites. Journal of Insect Science, 2005, 5, 7.	0.6	78
190	COLONY-LEVEL IMPACTS OF IMMUNE RESPONSIVENESS IN HONEY BEES, APIS MELLIFERA. Evolution; International Journal of Organic Evolution, 2005, 59, 2270.	1.1	9
191	The invasive Korea and Japan types of Varroa destructor , ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 411-419.	1.2	129
192	Inhibition of the American foulbrood bacterium, <i>Paenibacillus larvae larvae </i> , by bacteria isolated from honey bees. Journal of Apicultural Research, 2005, 44, 168-171.	0.7	43
193	Conditional immune-gene suppression of honeybees parasitized by Varroa mites. Journal of Insect Science, 2005, 5, 1-5.	0.9	43
194	Transmission of Kashmir bee virus by the ectoparasitic mite Varroa destructor. Apidologie, 2004, 35, 441-448.	0.9	145
195	Bacterial Probiotics Induce an Immune Response in the Honey Bee (Hymenoptera: Apidae). Journal of Economic Entomology, 2004, 97, 752-756.	0.8	185
196	Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Molecular Biology, 2004, 13, 141-146.	1.0	176
197	Molecular basis of sex determination in haplodiploids. Trends in Ecology and Evolution, 2004, 19, 1-3.	4.2	34
198	Transcriptional immune responses by honey bee larvae during invasion by the bacterial pathogen, Paenibacillus larvae. Journal of Invertebrate Pathology, 2004, 85, 105-111.	1.5	126

#	Article	IF	CITATIONS
199	Multiple virus infections in the honey bee and genome divergence of honey bee viruses. Journal of Invertebrate Pathology, 2004, 87, 84-93.	1.5	164
200	Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). Journal of Economic Entomology, 2004, 97, 752-6.	0.8	118
201	Beenome Soon: Honey Bees as a Model â€ [~] Non-Modelâ€ [™] System for Comparative Genomics. Comparative and Functional Genomics, 2003, 4, 351-352.	2.0	3
202	Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. Journal of Invertebrate Pathology, 2003, 83, 46-50.	1.5	131
203	Beenomes to Bombyx: future directions in applied insect genomics. Genome Biology, 2003, 4, 107.	13.9	19
204	Tracking an invasive honey bee pest: mitochondrial DNA variation in North American small hive beetles. Apidologie, 2003, 34, 103-109.	0.9	32
205	Complete mitochondrial DNA sequence of the important honey bee pest, Varroa destructor (Acari:) Tj ETQq $1\ 1\ 0.7$	784314 rg 0.7	gBT_/Overloc
206	Genetic Evidence for Coinfection of Honey Bees by Acute Bee Paralysis and Kashmir Bee Viruses. Journal of Invertebrate Pathology, 2001, 78, 189-193.	1.5	53
207	Gene expression and the evolution of insect polyphenisms. BioEssays, 2001, 23, 62-68.	1.2	56
208	Microsatellite loci in the honey bee parasitic mite Varroa jacobsoni. Molecular Ecology, 2000, 9, 1436-1438.	2.0	19
209	Mitochondrial DNA Relationships in an Emergent Pest of Honey Bees: <i>Aethina tumida </i> (Coleoptera: Nitidulidae) from the United States and Africa. Annals of the Entomological Society of America, 2000, 93, 415-420.	1.3	37
210	Gene expression and the evolution of insect polyphenismsâ€. BioEssays, 2000, 23, 62-68.	1.2	123
211	Molecular phylogenetics and the classification of honey bee viruses. Archives of Virology, 2000, 145, 2015-2026.	0.9	23
212	Expression profiles during honeybee caste determination. Genome Biology, 2000, 2, research0001.1.	13.9	147
213	Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5575-5580.	3.3	275
214	Parentage and sex allocation in the facultatively polygynous ant Myrmicatahoensis. Behavioral Ecology and Sociobiology, 1998, 44, 35-42.	0.6	20
215	Evolution of social insect colonies: Sex allocation and kin selection. Trends in Ecology and Evolution, 1997, 12, 244-245.	4.2	O
216	Competition and relatedness between queens of the facultatively polygynous antMyrmica tahoensis. Animal Behaviour, 1996, 51, 831-840.	0.8	18

#	Article	IF	CITATIONS
217	Temporal and spatial variation in reproduction in the facultatively polygynous antMyrmica tahoensis (Hymenoptera: Formicidae). Insectes Sociaux, 1996, 43, 309-317.	0.7	12
218	Queen longevity, queen adoption, and posthumous indirect fitness in the facultatively polygynous ant Myrmica tahoensis. Behavioral Ecology and Sociobiology, 1996, 39, 275-284.	0.6	54
219	Relatedness threshold for the production of female sexuals in colonies of a polygynous ant, Myrmica tahoensis, as revealed by microsatellite DNA analysis Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 6514-6517.	3.3	78
220	Gene Flow or Heterozygote Advantage?. Science, 1994, 263, 1157-1157.	6.0	0
221	Parentage analyses in ant colonies using simple sequence repeat loci. Molecular Ecology, 1993, 2, 393-397.	2.0	124
222	The Movement of Western Honey Bees (Apis mellifera L.) Among U.S. States and Territories: History, Benefits, Risks, and Mitigation Strategies. Frontiers in Ecology and Evolution, 0, 10, .	1.1	6