
## Teresa Pasqua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2411535/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Granin-derived peptides. Progress in Neurobiology, 2017, 154, 37-61.                                                                                                                                                        | 5.7 | 65        |
| 2  | Progress in the emerging role of selenoproteins in cardiovascular disease: focus on endoplasmic reticulum-resident selenoproteins. Cellular and Molecular Life Sciences, 2019, 76, 3969-3985.                               | 5.4 | 53        |
| 3  | Protective Role of GPER Agonist Gâ€1 on Cardiotoxicity Induced by Doxorubicin. Journal of Cellular<br>Physiology, 2017, 232, 1640-1649.                                                                                     | 4.1 | 46        |
| 4  | Role of NLRP-3 Inflammasome in Hypertension: A Potential Therapeutic Target. Current Pharmaceutical<br>Biotechnology, 2018, 19, 708-714.                                                                                    | 1.6 | 44        |
| 5  | Full-Length Human Chromogranin-A Cardioactivity: Myocardial, Coronary, and Stimulus-Induced<br>Processing Evidence in Normotensive and Hypertensive Male Rat Hearts. Endocrinology, 2013, 154,<br>3353-3365.                | 2.8 | 41        |
| 6  | Cardiac Damage in Anthracyclines Therapy: Focus on Oxidative Stress and Inflammation. Antioxidants and Redox Signaling, 2020, 32, 1081-1097.                                                                                | 5.4 | 40        |
| 7  | Phosphodiesterase type-2 and NO-dependent <i>S</i> -nitrosylation mediate the cardioinhibition of the antihypertensive catestatin. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H431-H442. | 3.2 | 37        |
| 8  | Notch1 Mediates Preconditioning Protection Induced by GPER in Normotensive and Hypertensive<br>Female Rat Hearts. Frontiers in Physiology, 2018, 9, 521.                                                                    | 2.8 | 32        |
| 9  | Immunosuppression of Macrophages Underlies the Cardioprotective Effects of CST (Catestatin).<br>Hypertension, 2021, 77, 1670-1682.                                                                                          | 2.7 | 31        |
| 10 | Catestatin Increases the Expression of Anti-Apoptotic and Pro-Angiogenetic Factors in the<br>Post-Ischemic Hypertrophied Heart of SHR. PLoS ONE, 2014, 9, e102536.                                                          | 2.5 | 29        |
| 11 | Chromofungin, CgA47-66-derived peptide, produces basal cardiac effects and postconditioning cardioprotective action during ischemia/reperfusion injury. Peptides, 2015, 71, 40-48.                                          | 2.4 | 26        |
| 12 | PI3Kδ Inhibition as a Potential Therapeutic Target in COVID-19. Frontiers in Immunology, 2020, 11, 2094.                                                                                                                    | 4.8 | 23        |
| 13 | Indenopyrazole oxime ethers: Synthesis and $\hat{I}^21$ -adrenergic blocking activity. European Journal of Medicinal Chemistry, 2015, 92, 672-681.                                                                          | 5.5 | 21        |
| 14 | Physiological levels of chromogranin A prevent doxorubicinâ€induced cardiotoxicity without<br>impairing its anticancer activity. FASEB Journal, 2019, 33, 7734-7747.                                                        | 0.5 | 20        |
| 15 | Role of Brain Neuroinflammatory Factors on Hypertension in the Spontaneously Hypertensive Rat.<br>Neuroscience, 2018, 375, 158-168.                                                                                         | 2.3 | 17        |
| 16 | Cateslytin abrogates lipopolysaccharide-induced cardiomyocyte injury by reducing inflammation and<br>oxidative stress through toll like receptor 4 interaction. International Immunopharmacology, 2021,<br>94, 107487.      | 3.8 | 16        |
| 17 | The chromogranin A 1â€373 fragment reveals how a single change in the protein sequence exerts strong cardioregulatory effects by engaging neuropilinâ€1. Acta Physiologica, 2021, 231, e13570.                              | 3.8 | 14        |
| 18 | Cardiac and hepatic role of râ€At <scp>HSP</scp> 70: basal effects and protection against ischemic and sepsis conditions. Journal of Cellular and Molecular Medicine, 2015, 19, 1492-1503.                                  | 3.6 | 13        |

Teresa Pasqua

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cardiac and Metabolic Impact of Functional Foods with Antioxidant Properties Based on Whey Derived<br>Proteins Enriched with Hemp Seed Oil. Antioxidants, 2020, 9, 1066. | 5.1 | 13        |
| 20 | Nesfatin-1 in cardiovascular orchestration: From bench to bedside. Pharmacological Research, 2020,<br>156, 104766.                                                       | 7.1 | 11        |
| 21 | Biological Roles of the Eclectic Chromogranin-A-derived Peptide Catestatin. Current Medicinal Chemistry, 2017, 24, 3356-3372.                                            | 2.4 | 8         |
| 22 | Modulation of the coronary tone in the expanding scenario of Chromogranin-A and its derived peptides. Future Medicinal Chemistry, 2019, 11, 1501-1511.                   | 2.3 | 7         |
| 23 | Mechanisms and Pathophysiology of Obesity: Upgrading a Complex Scenario. Current Medicinal Chemistry, 2020, 27, 172-173.                                                 | 2.4 | 2         |