Xue-Ji Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2411365/xue-ji-zhang-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

19,672 69 581 109 h-index g-index citations papers 610 7.8 24,001 7.39 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
581	Biomimetic Hierarchically Silver Nanowire Interwoven MXene Mesh for Flexible Transparent Electrodes and Invisible Camouflage Electronics <i>Nano Letters</i> , 2022 ,	11.5	5
580	Wireless USB-like electrochemical platform for individual electrochemical sensing in microdroplets <i>Analytica Chimica Acta</i> , 2022 , 1197, 339526	6.6	1
579	Multiple amplified microRNAs monitoring in living cells based on fluorescence quenching of MoB and hybridization chain reaction. <i>Biosensors and Bioelectronics</i> , 2022 , 197, 113815	11.8	2
578	Biohybrid bacterial microswimmers with metal-organic framework exoskeletons enable cytoprotection and active drug delivery in a harsh environment. <i>Materials Today Chemistry</i> , 2022 , 23, 100609	6.2	1
577	Using bimetallic Au/Cu nanoplatelets for construction of facile and label-free inner filter effect-based photoluminescence sensing platform for sarcosine detection <i>Analytica Chimica Acta</i> , 2022 , 1192, 339331	6.6	1
576	Biomimetic multifactor stimulation method for analyzing the synergism of matrix stiffness and inorganic polyphosphates on cellular behaviors <i>Talanta</i> , 2022 , 241, 123222	6.2	
575	Multifunctional hydrogel as wound dressing for intelligent wound monitoring. <i>Chemical Engineering Journal</i> , 2022 , 433, 134625	14.7	11
574	Fully integrated flexible biosensor for wearable continuous glucose monitoring. <i>Biosensors and Bioelectronics</i> , 2022 , 196, 113760	11.8	17
573	High sensitive electrochemical methamphetamine detection in serum and urine via atom transfer radical polymerization signal amplification. <i>Talanta</i> , 2022 , 238, 123026	6.2	1
572	Coenzyme-catalyzed electroinitiated reversible addition fragmentation chain transfer polymerization for ultrasensitive electrochemical DNA detection. <i>Talanta</i> , 2022 , 236, 122840	6.2	0
571	Powering bioanalytical applications in biomedicine with light-responsive Janus micro-/nanomotors <i>Mikrochimica Acta</i> , 2022 , 189, 116	5.8	5
570	Artificial photoactive chlorophyll conjugated vanadium carbide nanostructure for synergistic photothermal/photodynamic therapy of cancer <i>Journal of Nanobiotechnology</i> , 2022 , 20, 121	9.4	1
569	A Sample and Detection Microneedle Patch for Psoriasis MicroRNA Biomarker Analysis in Interstitial Fluid <i>Analytical Chemistry</i> , 2022 ,	7.8	4
568	An electrochemical wearable sensor for levodopa quantification in sweat based on a metal Drganic framework/graphene oxide composite with integrated enzymes. <i>Sensors and Actuators B: Chemical</i> , 2022 , 359, 131586	8.5	9
567	All-textile sensors for boxing punch force and velocity detection. <i>Nano Energy</i> , 2022 , 97, 107114	17.1	4
566	Underwater sensing and warming E-textiles with reversible liquid metal electronics. <i>Chemical Engineering Journal</i> , 2022 , 437, 135382	14.7	7
565	2-Methylimidazole-tuned 🛭-Selfြstrategy based on benzimidazole-5-carboxylate for boosting oxygen reduction electrocatalysis. <i>Applied Surface Science</i> , 2022 , 591, 153066	6.7	O

(2021-2022)

564	©old Inlaid with Hair⊕Permanent Fluorescent Hair Dyeing Using Fast Protein-Assisted Biomineralization of Gold Nanoclusters. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 305-313	8.3	1
563	An electrochemical sensor based on ZIF-67/Ag nanoparticles (NPs)/polydopamine (PDA) nanocomposites for detecting chloride ion with good reproducibility. <i>Journal of Electroanalytical Chemistry</i> , 2022 , 116323	4.1	1
562	Radiative Cooling and Solar Heating Janus Films for Personal Thermal Management <i>ACS Applied Materials & Amp; Interfaces</i> , 2022 ,	9.5	3
561	Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid <i>Analytica Chimica Acta</i> , 2022 , 1208, 339843	6.6	1
560	Magnetic-Powered Janus Cell Robots Loaded with Oncolytic Adenovirus for Active and Targeted Virotherapy of Bladder Cancer <i>Advanced Materials</i> , 2022 , e2201042	24	6
559	Ultra-trace enriching biosensing in nanoliter sample <i>Biosensors and Bioelectronics</i> , 2022 , 210, 114297	11.8	2
558	Engineering of upconversion carbon dots/metal-organic frameworks P eeled Pitaya-Likell heterostructure for mitochondria-targeted photodynamic therapy. <i>Chemical Engineering Journal</i> , 2022 , 444, 136706	14.7	1
557	Magnetic zirconium-based Prussian blue analog nanozyme: enhanced peroxidase-mimicking activity and colorimetric sensing of phosphate ion <i>Mikrochimica Acta</i> , 2022 , 189, 220	5.8	1
556	Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy. <i>Biomaterials</i> , 2022 , 121603	15.6	Ο
555	Multi-tailoring of a modified MOF-derived CuO electrochemical transducer for enhanced hydrogen peroxide sensing. <i>Analyst, The</i> , 2021 ,	5	3
554	Dendritic porous silica nanoparticles with high-curvature structures for a dual-mode DNA sensor based on fluorometer and person glucose meter. <i>Mikrochimica Acta</i> , 2021 , 188, 407	5.8	2
553	Rapid detection of miRNA via development of consecutive adenines (polyA)-based electrochemical biosensors. <i>Biosensors and Bioelectronics</i> , 2021 , 198, 113830	11.8	4
552	Programmable Polymeric Microneedles for Combined Chemotherapy and Antioxidative Treatment of Rheumatoid Arthritis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 55559-55568	9.5	4
551	Smart Textile Based on 3D Stretchable Silver Nanowires/MXene Conductive Networks for Personal Healthcare and Thermal Management. <i>ACS Applied Materials & District Management</i> , 13, 56607-56619	9.5	9
550	Multifunctional Metal-Organic Framework Exoskeletons Protect Biohybrid Sperm Microrobots for Active Drug Delivery from the Surrounding Threats. <i>ACS Applied Materials & Delivery From the Surrounding Threats.</i> ACS Applied Materials & Delivery From the Surrounding Threats.	9.5	1
549	Shedding Light on DNA-Based Nanoprobes for Live-Cell MicroRNA Imaging. <i>Small</i> , 2021 , e2106281	11	2
548	Nature Inspired MXene-Decorated 3D Honeycomb-Fabric Architectures Toward Efficient Water Desalination and Salt Harvesting. <i>Nano-Micro Letters</i> , 2021 , 14, 10	19.5	13
547			

546	ZNF545 loss promotes ribosome biogenesis and protein translation to initiate colorectal tumorigenesis in mice. <i>Oncogene</i> , 2021 , 40, 6590-6600	9.2	2
545	Luminescent Covalent Organic Frameworks for Biosensing and Bioimaging Applications. <i>Small</i> , 2021 , e2103516	11	8
544	Biospired Janus Silk E-Textiles with Wet-Thermal Comfort for Highly Efficient Biofluid Monitoring. <i>Nano Letters</i> , 2021 , 21, 8880-8887	11.5	16
543	Fast and quantitative analysis of level 3 details for latent fingerprints. <i>Analytical Methods</i> , 2021 , 13, 556	54 5. 5 57	20
542	Target-Cell-Specific Bioorthogonal and Endogenous ATP Control of Signal Amplification for Intracellular MicroRNA Imaging. <i>Analytical Chemistry</i> , 2021 , 93, 1693-1701	7.8	13
54 ¹	Customizable Textile Sensors Based on Helical Core-Spun Yarns for Seamless Smart Garments. <i>Langmuir</i> , 2021 , 37, 3122-3129	4	11
540	Optogenetic Control of Phosphatidylinositol (3,4,5)-Triphosphate Production by Light-Sensitive Cryptochrome Proteins on the Plasma Membrane. <i>Chinese Journal of Chemistry</i> , 2021 , 39, 1240-1246	4.9	1
539	Metal-Organic Framework-Based Stimuli-Responsive Polymers. <i>Journal of Composites Science</i> , 2021 , 5, 101	3	7
538	Tendril-Inspired 900% Ultrastretching Fiber-Based Zn-Ion Batteries for Wearable Energy Textiles. <i>ACS Applied Materials & District Mate</i>	9.5	13
537	Inkjet printing based ultra-small MnO nanosheets synthesis for glutathione sensing. <i>Talanta</i> , 2021 , 225, 121989	6.2	3
536	Engineering Structural Metal Drganic Framework for Hypoxia-Tolerant Type I Photodynamic Therapy against Hypoxic Cancer 2021 , 3, 781-789		6
535	A highly sensitive assay for matrix metalloproteinase 2 via signal amplification strategy of eATRP. <i>Microchemical Journal</i> , 2021 , 164, 106015	4.8	3
534	Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy. <i>Talanta</i> , 2021 , 226, 122132	6.2	5
533	VC Nanosheets as Dual-Functional Antibacterial Agents ACS Applied Bio Materials, 2021, 4, 4215-4223	4.1	5
532	Recent advances in optical imaging of biomarkers in vivo. <i>Nano Today</i> , 2021 , 38, 101156	17.9	5
531	Au Nanoclusters Based Biosensors 2021 , 1-57		
530	Ultra-sensitive nucleic acid detection based on target cycling of triple helix molecular switch and ATRP double signal amplification. <i>Sensors and Actuators B: Chemical</i> , 2021 , 337, 129791	8.5	5
529	Ruthenium-based Conjugated Polymer and Metal-organic Framework Nanocomposites for Glucose Sensing. <i>Electroanalysis</i> , 2021 , 33, 1902-1910	3	4

(2021-2021)

528	Advanced micro/nanomotors for enhanced bioadhesion and tissue penetration. <i>Applied Materials Today</i> , 2021 , 23, 101034	6.6	8
527	Fe-MOGs-based enzyme mimetic and its mediated electrochemiluminescence for in situ detection of HO released from Hela cells. <i>Biosensors and Bioelectronics</i> , 2021 , 184, 113216	11.8	11
526	Magnetic-Propelled Janus Yeast Cell Robots Functionalized with Metal-Organic Frameworks for Mycotoxin Decontamination. <i>Micromachines</i> , 2021 , 12,	3.3	2
525	Nano-Au-modified TiO2 grown on dendritic porous silica particles for enhanced CO2 photoreduction. <i>Microporous and Mesoporous Materials</i> , 2021 , 310, 110635	5.3	7
524	Multifunctional conductive hydrogel-based flexible wearable sensors. <i>TrAC - Trends in Analytical Chemistry</i> , 2021 , 134, 116130	14.6	52
523	Nitrogen-doped porous carbon with complicated architecture and superior K+ storage performance. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 396-400	5.8	2
522	Biosorption of iron ions through microalgae from wastewater and soil: Optimization and comparative study. <i>Chemosphere</i> , 2021 , 265, 129172	8.4	2
521	Highly sensitive lung cancer DNA detection via GO enhancing eATRP signal amplification. <i>Microchemical Journal</i> , 2021 , 160, 105766	4.8	3
520	On-demand mixing and dispersion in mini-pillar based microdroplets. <i>Nanoscale</i> , 2021 , 13, 739-745	7.7	5
519	Target-triggered regioselective assembly of nanoprobes for Raman imaging of dual cancer biomarkers in living cells. <i>Sensors and Actuators B: Chemical</i> , 2021 , 330, 129319	8.5	4
518	Near-infrared light-driven yolk@shell carbon@silica nanomotors for fuel-free triglyceride degradation. <i>Nano Research</i> , 2021 , 14, 654-659	10	7
517	Synergistic in-situ growth of silver nanoparticles with nanozyme activity for dual-mode biosensing and cancer theranostics. <i>Chinese Chemical Letters</i> , 2021 , 32, 1215-1219	8.1	15
516	Detection of coronavirus in environmental surveillance and risk monitoring for pandemic control. <i>Chemical Society Reviews</i> , 2021 , 50, 3656-3676	58.5	16
515	Two-Dimensional Metalloporphyrinic Framework Nanosheet-Based Dual-Mechanism-Driven Ratiometric Electrochemiluminescent Biosensing of Protein Kinase Activity <i>ACS Applied Bio Materials</i> , 2021 , 4, 1616-1623	4.1	6
514	Gastric Acid Powered Nanomotors Release Antibiotics for In Vivo Treatment of Helicobacter pylori Infection. <i>Small</i> , 2021 , 17, e2006877	11	15
513	Gold nanorods-based lateral flow biosensors for sensitive detection of nucleic acids. <i>Mikrochimica Acta</i> , 2021 , 188, 133	5.8	3
512	Application of peptide nucleic acid in electrochemical nucleic acid biosensors. <i>Biopolymers</i> , 2021 , e2346	42.2	O
511	Sensitive detection of transcription factor by coupled fluorescence-encoded microsphere with exonuclease protection. <i>Talanta</i> , 2021 , 229, 122272	6.2	2

510	Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo. <i>Nano Energy</i> , 2021 , 85, 105941	17.1	26
509	Postmodulation of the Metal-Organic Framework Precursor toward the Vacancy-Rich CuO Transducer for Sensitivity Boost: Synthesis, Catalysis, and HO Sensing. <i>Analytical Chemistry</i> , 2021 , 93, 11066-11071	7.8	2
508	High-Content Label-Free Single-Cell Analysis with a Microfluidic Device Using Programmable Scanning Electrochemical Microscopy. <i>Analytical Chemistry</i> , 2021 , 93, 12417-12425	7.8	3
507	An electrochemical aptasensor based on AuPt alloy nanoparticles for ultrasensitive detection of amyloid-lbligomers. <i>Talanta</i> , 2021 , 231, 122360	6.2	11
506	Wearable Sunlight-Triggered Bimorph Textile Actuators. <i>Nano Letters</i> , 2021 , 21, 8126-8134	11.5	6
505	Flexible Biosensors Based on Colorimetry, Fluorescence, and Electrochemistry for Point-of-Care Testing. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 753692	5.8	7
504	Cu-mediated NIR photoinduced polymerization for highly sensitive electrochemical nucleic acid detection. <i>Sensors and Actuators B: Chemical</i> , 2021 , 349, 130797	8.5	
503	A lightweight MXene-Coated nonwoven fabric with excellent flame Retardancy, EMI Shielding, and Electrothermal/Photothermal conversion for wearable heater. <i>Chemical Engineering Journal</i> , 2021 , 430, 132605	14.7	19
502	A novel electrochemical biosensor for lung cancer-related gene detection based on copper ferrite-enhanced photoinitiated chain-growth amplification. <i>Analytica Chimica Acta</i> , 2021 , 1179, 338843	3 ^{6.6}	3
501	Soft robotic reinforced by carbon fiber skeleton with large deformation and enhanced blocking forces. <i>Composites Part B: Engineering</i> , 2021 , 223, 109099	10	8
500	Emerging two-dimensional materials-based diagnosis of neurodegenerative diseases: Status and challenges. <i>Nano Today</i> , 2021 , 40, 101284	17.9	3
499	Acoustic aggregation-induced separation for enhanced fluorescence detection of Alzheimer's biomarker. <i>Talanta</i> , 2021 , 233, 122517	6.2	7
498	Gold-platinum nanoflowers as colored and catalytic labels for ultrasensitive lateral flow MicroRNA-21 assay. <i>Sensors and Actuators B: Chemical</i> , 2021 , 344, 130325	8.5	3
497	Luminescent wearable biosensors based on gold nanocluster networks for "turn-on" detection of Uric acid, glucose and alcohol in sweat. <i>Biosensors and Bioelectronics</i> , 2021 , 192, 113530	11.8	7
496	Serum nitrite and nitrate: A potential biomarker for post-covid-19 complications?. <i>Free Radical Biology and Medicine</i> , 2021 , 175, 216-225	7.8	6
495	A host guest interaction enhanced polymerization amplification for electrochemical detection of cocaine. <i>Analytica Chimica Acta</i> , 2021 , 1184, 339041	6.6	O
494	Ultrasensitive electrochemical detection of miRNA based on polymerization signal amplification. <i>Talanta</i> , 2021 , 235, 122744	6.2	4
493	Strongly phosphorescent and water-soluble gold(I)-silver(I)-cysteine nanoplatelets via versatile small biomolecule cysteine-assisted synthesis for intracellular hypochlorite detection. <i>Biosensors</i> and <i>Bioelectronics</i> 2021 , 193, 113571	11.8	3

(2020-2021)

492	Recent advances and challenges of biosensing in point-of-care molecular diagnosis. <i>Sensors and Actuators B: Chemical</i> , 2021 , 348, 130708	8.5	5
491	A distance-based capillary biosensor using wettability alteration. <i>Lab on A Chip</i> , 2021 , 21, 719-724	7.2	6
490	Detection of the effect of polydopamine (PDA)-coated polydimethylsiloxane (PDMS) substrates on the release of HO from a single HeLa cell. <i>Analyst, The</i> , 2021 , 146, 6445-6449	5	
489	Wearable strain sensor for real-time sweat volume monitoring. <i>IScience</i> , 2021 , 24, 102028	6.1	15
488	Ultra-Trace Protein Detection by Integrating Lateral Flow Biosensor with Ultrasound Enrichment. <i>Analytical Chemistry</i> , 2021 , 93, 2996-3001	7.8	10
487	Recent Advances in Metal-Organic Framework-Based Electrochemical Biosensing Applications <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 797067	5.8	O
486	Label-free physical and electrochemical imaging of latent fingerprints by water and SECM. <i>Electrochimica Acta</i> , 2020 , 350, 136373	6.7	5
485	Integrated Ultrasonic Aggregation-Induced Enrichment with Raman Enhancement for Ultrasensitive and Rapid Biosensing. <i>Analytical Chemistry</i> , 2020 , 92, 7816-7821	7.8	26
484	Microfluidic Control of Tumor and Stromal Cell Spheroids Pairing and Merging for Three-Dimensional Metastasis Study. <i>Analytical Chemistry</i> , 2020 , 92, 7638-7645	7.8	10
483	Fluorescent Gold Nanoclusters for Biosensor and Bioimaging Application. <i>Crystals</i> , 2020 , 10, 357	2.3	15
482	Ultrasensitive DNA electrochemical biosensor based on MnTBAP biomimetic catalyzed AGET ATRP signal amplification reaction. <i>Chemical Communications</i> , 2020 , 56, 6636-6639	5.8	6
481	Construction of dendritic Janus nanomotors with HO and NIR light dual-propulsion via a Pickering emulsion. <i>Soft Matter</i> , 2020 , 16, 4961-4968	3.6	16
480	Integrated individually electrochemical array for simultaneously detecting multiple Alzheimer's biomarkers. <i>Biosensors and Bioelectronics</i> , 2020 , 162, 112253	11.8	13
479	Biodegradable Metal-Organic Frameworks Power DNAzyme for in Vivo Temporal-Spatial Control Fluorescence Imaging of Aberrant MicroRNA and Hypoxic Tumor. <i>Analytical Chemistry</i> , 2020 , 92, 8333-8	3 ⁷ 3 ⁸	32
478	Thioether-bridged mesoporous organosilica nanocapsules with weak acid-triggered charge reversal for drug delivery. <i>Microporous and Mesoporous Materials</i> , 2020 , 302, 110242	5.3	7
477	Droplet array for open-channel high-throughput SERS biosensing. <i>Talanta</i> , 2020 , 218, 121206	6.2	6
476	Integrated Smart Janus Textile Bands for Self-Pumping Sweat Sampling and Analysis. <i>ACS Sensors</i> , 2020 , 5, 1548-1554	9.2	57
475	Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. <i>Science Robotics</i> , 2020 , 5,	18.6	119

474	Core@Satellite Janus Nanomotors with pH-Responsive Multi-phoretic Propulsion. <i>Angewandte Chemie</i> , 2020 , 132, 14474-14478	3.6	10
473	Core@Satellite Janus Nanomotors with pH-Responsive Multi-phoretic Propulsion. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14368-14372	16.4	22
472	Visual detection of high-risk HPV16 and HPV18 based on loop-mediated isothermal amplification. <i>Talanta</i> , 2020 , 217, 121015	6.2	7
471	Functional nucleic acid-based fluorescence polarization/anisotropy biosensors for detection of biomarkers. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 6655-6665	4.4	11
470	Artificial intelligence biosensors: Challenges and prospects. <i>Biosensors and Bioelectronics</i> , 2020 , 165, 112412	11.8	62
469	Near-infrared triggered Ti3C2/g-C3N4 heterostructure for mitochondria-targeting multimode photodynamic therapy combined photothermal therapy. <i>Nano Today</i> , 2020 , 34, 100919	17.9	40
468	Recapitulating and Deciphering Tumor Microenvironment by Using 3D Printed Plastic Brick-Like Microfluidic Cell Patterning. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901713	10.1	3
467	Preparation of glycine mediated graphene oxide/g-C3N4 lamellar membranes for nanofiltration. Journal of Membrane Science, 2020 , 601, 117948	9.6	29
466	Bioinspired Framework Nucleic Acid Capture Sensitively and Rapidly Resolving MicroRNAs Biomarkers in Living Cells. <i>Analytical Chemistry</i> , 2020 , 92, 4411-4418	7.8	26
465	Fluorine doped calcium deficient hydroxyapatite nanorod bundles as theranostic nanoplatforms. <i>Materials Letters</i> , 2020 , 264, 127297	3.3	1
464	A Corrole-Based Covalent Organic Framework Featuring Desymmetrized Topology. <i>Angewandte Chemie</i> , 2020 , 132, 4384-4389	3.6	1
463	Algae Extraction Controllable Delamination of Vanadium Carbide Nanosheets with Enhanced Near-Infrared Photothermal Performance. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6601-60	sđ6 ^{.4}	42
462	Cellular Nanofiber Structure with Secretory Activity-Promoting Characteristics for Multicellular Spheroid Formation and Hair Follicle Regeneration. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 12, 7931-7941	9.5	9
461	Graphene-Based Biosensors for Detection of Biomarkers. <i>Micromachines</i> , 2020 , 11,	3.3	57
460	Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants. <i>Biosensors and Bioelectronics</i> , 2020 , 152, 112013	11.8	30
459	Integrated Microdroplets Array for Intelligent Electrochemical Fabrication. <i>Advanced Functional Materials</i> , 2020 , 30, 1910329	15.6	10
458	Algae Extraction Controllable Delamination of Vanadium Carbide Nanosheets with Enhanced Near-Infrared Photothermal Performance. <i>Angewandte Chemie</i> , 2020 , 132, 6663-6668	3.6	8
457	Single-atom catalysts boost nitrogen electroreduction reaction. <i>Materials Today</i> , 2020 , 38, 99-113	21.8	30

(2020-2020)

456	Integrating modification and detection in acoustic microchip for in-situ analysis. <i>Biosensors and Bioelectronics</i> , 2020 , 158, 112185	11.8	17
455	Bioinspired Superwettable Microspine Chips with Directional Droplet Transportation for Biosensing. <i>ACS Nano</i> , 2020 , 14, 4654-4661	16.7	39
454	An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. <i>Nature Communications</i> , 2020 , 11, 1735	17.4	153
453	pH-Responsive Au(i)-disulfide nanoparticles with tunable aggregation-induced emission for monitoring intragastric acidity. <i>Chemical Science</i> , 2020 , 11, 6472-6478	9.4	12
452	ATMP derived cobalt-metaphosphate complex as highly active catalyst for oxygen reduction reaction. <i>Journal of Catalysis</i> , 2020 , 387, 129-137	7.3	16
451	Zirconium-Metalloporphyrin Frameworks-Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity. <i>Analytical Chemistry</i> , 2020 , 92, 7354-7362	7.8	30
450	The role of sampling in wearable sweat sensors. <i>Talanta</i> , 2020 , 212, 120801	6.2	52
449	Mini-pillar microarray for individually electrochemical sensing in microdroplets. <i>Biosensors and Bioelectronics</i> , 2020 , 149, 111845	11.8	12
448	Metal-Free Photoinduced Atom Transfer Radical Polymerization for Highly Sensitive Detection of Lung Cancer DNA. <i>Chemistry - A European Journal</i> , 2020 , 26, 1633-1639	4.8	10
447	A Corrole-Based Covalent Organic Framework Featuring Desymmetrized Topology. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4354-4359	16.4	42
446	A Versatile Sunscreen with Minimal ROS Damage and Low Permeability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 6217-6225	9.5	4
445	A sensitive and rapid "off-on" fluorescent probe for the detection of esterase and its application in evaluating cell status and discrimination of living cells and dead cells. <i>Analyst, The</i> , 2020 , 145, 1408-1413	₃ 5	9
444	Enhanced Electrochemiluminescence of Porphyrin-Based Metal-Organic Frameworks Controlled via Coordination Modulation. <i>Analytical Chemistry</i> , 2020 , 92, 1916-1924	7.8	13
443	Smartphone-based tape sensors for multiplexed rapid urinalysis. <i>Sensors and Actuators B: Chemical</i> , 2020 , 304, 127415	8.5	28
442	A facile strategy to form three-dimensional network structure for mechanically robust superhydrophobic nanocoatings with enhanced transmittance. <i>Journal of Colloid and Interface Science</i> , 2020 , 563, 42-53	9.3	17
441	Pd@Au Bimetallic Nanoplates Decorated Mesoporous MnO for Synergistic Nucleus-Targeted NIR-II Photothermal and Hypoxia-Relieved Photodynamic Therapy. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901528	10.1	44
440	Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear. <i>ACS Nano</i> , 2020 , 14, 559-567	16.7	99
439	Exosomes-mediated synthetic Dicer substrates delivery for intracellular Dicer imaging detection. Biosensors and Bioelectronics, 2020, 151, 111907	11.8	9

438	NIR powered Janus nanocarrier for deep tumor penetration. <i>Applied Materials Today</i> , 2020 , 18, 100504	6.6	21
437	Improved supercapacitors by implanting ultra-long single-walled carbon nanotubes into manganese oxide domains. <i>Journal of Power Sources</i> , 2020 , 479, 228795	8.9	5
436	Nitronyl nitroxide monoradical TEMPO as new electrochemical label for ultrasensitive detection of nucleic acids. <i>Analytica Chimica Acta</i> , 2020 , 1136, 19-24	6.6	21
435	Cancer Therapy: Cancer Cell Membrane Camouflaged Semi-Yolk@Spiky-Shell Nanomotor for Enhanced Cell Adhesion and Synergistic Therapy (Small 39/2020). <i>Small</i> , 2020 , 16, 2070215	11	
434	Target-induced molecular-switch on triple-helix DNA-functionalized carbon nanotubes for simultaneous visual detection of nucleic acids and proteins. <i>Chemical Communications</i> , 2020 , 56, 13657-	13660	3
433	Integrated Wound Recognition in Bandages for Intelligent Treatment. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2000941	10.1	10
432	Postsynthesis Ligand Exchange Induced Porphyrin Hybrid Crystalloid Reconstruction for Self-Enhanced Electrochemiluminescence. <i>Analytical Chemistry</i> , 2020 , 92, 15270-15274	7.8	2
431	Highly sensitive determination of DNA via a new type of electrochemical zirconium signaling probe. <i>New Journal of Chemistry</i> , 2020 , 44, 20770-20775	3.6	4
430	Stimuli-responsive microgels for controlled deposition of gold nanoparticles on surfaces. <i>Nanoscale Advances</i> , 2020 , 2, 5242-5253	5.1	1
429	Uniform palladium nanosheets for fluorimetric detection of circulating tumor DNA. <i>Analytica Chimica Acta</i> , 2020 , 1139, 164-168	6.6	4
428	Ultrafine nano-TiO2 loaded on dendritic porous silica nanoparticles for robust transparent antifogging self-cleaning nanocoatings. <i>Ceramics International</i> , 2020 , 46, 23651-23661	5.1	3
427	Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem. <i>Biomaterials</i> , 2020 , 258, 120278	15.6	50
426	Stimuli-responsive polymer/nanomaterial hybrids for sensing applications. <i>Analyst, The</i> , 2020 , 145, 5713	3-5724	12
425	Bioinspired wettable-nonwettable micropatterns for emerging applications. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 8101-8115	7.3	11
424	Inkjet-printed MoS2/PVP hybrid nanocomposite for enhanced humidity sensing. <i>Sensors and Actuators A: Physical</i> , 2020 , 316, 112388	3.9	9
423	Cancer Cell Membrane Camouflaged Semi-Yolk@Spiky-Shell Nanomotor for Enhanced Cell Adhesion and Synergistic Therapy. <i>Small</i> , 2020 , 16, e2003834	11	29
422	Janus dendritic silica/carbon@Pt nanomotors with multiengines for HO, near-infrared light and lipase powered propulsion. <i>Soft Matter</i> , 2020 , 16, 9553-9558	3.6	10
421	Bacterial Vesicle-Cancer Cell Hybrid Membrane-Coated Nanoparticles for Tumor Specific Immune Activation and Photothermal Therapy. <i>ACS Applied Materials & Description and Photothermal Therapy. ACS Applied Materials & Description ACS Applied Materials & Description ACS Applied Materials & Description ACS Appli</i>	9.5	38

(2019-2020)

420	F-containing initiatior for ultrasensitive fluorescent detection of lung cancer DNA via atom transfer radical polymerization. <i>Analytica Chimica Acta</i> , 2020 , 1094, 99-105	6.6	7
419	Cold direct pen writing of reduced graphene oxide foams for ultrasensitive micro-contact force probing. <i>Carbon</i> , 2020 , 157, 140-146	10.4	12
418	Exploration of accessibility of internal pore surface by using rigid nanoparticles as a probe for constructing the integrated nanocomposites. <i>Journal of Alloys and Compounds</i> , 2020 , 815, 152641	5.7	5
417	Ultrasensitive peptide-based electrochemical detection of protein kinase activity amplified by RAFT polymerization. <i>Talanta</i> , 2020 , 206, 120173	6.2	12
416	Rapid detection of high-risk HPV16 and HPV18 based on microchip electrophoresis. <i>Journal of Pharmaceutical Analysis</i> , 2020 , 10, 329-333	14	1
415	Rational Design of "Three-in-One" Ratiometric Nanoprobes: Protein-Caged Dityrosine, CdS Quantum Dots, and Gold Nanoclusters. <i>ACS Omega</i> , 2020 , 5, 8943-8951	3.9	6
414	An Aggregation-Induced Phosphorescence-Active "Turn-Off" Nanosensor Based on Ferric-Specific Quenching of Luminescent and Water-Soluble Au(I)-Cysteine Nanocomplexes. <i>Analytical Chemistry</i> , 2020 , 92, 6785-6791	7.8	13
413	Electrochemically Controlled RAFT Polymerization for Highly Sensitive Electrochemical Biosensing of Protein Kinase Activity. <i>Analytical Chemistry</i> , 2019 , 91, 1936-1943	7.8	25
412	Size-effect of gold nanorods on modulating the kinetic process of amyloid-laggregation. <i>Chemical Physics Letters</i> , 2019 , 734, 136702	2.5	2
411	Strategies of Luminescent Gold Nanoclusters for Chemo-/Bio-Sensing. <i>Molecules</i> , 2019 , 24,	4.8	14
410	A controllable local drug delivery system based on porous fibers for synergistic treatment of melanoma and promoting wound healing. <i>Biomaterials Science</i> , 2019 , 7, 5084-5096	7.4	18
409	Microfluidic Chip-Based Wearable Colorimetric Sensor for Simple and Facile Detection of Sweat Glucose. <i>Analytical Chemistry</i> , 2019 , 91, 14803-14807	7.8	89
408	Sensitively distinguishing intracellular precursor and mature microRNA abundance. <i>Chemical Science</i> , 2019 , 10, 1709-1715	9.4	25
407	Self-assembled meso-tetra(4-carboxyphenyl)porphine: Structural modulation using surfactants for enhanced photoelectrochemical properties. <i>Electrochimica Acta</i> , 2019 , 299, 560-566	6.7	3
406	Engineered Exosome-Mediated Near-Infrared-II Region VC Quantum Dot Delivery for Nucleus-Target Low-Temperature Photothermal Therapy. <i>ACS Nano</i> , 2019 , 13, 1499-1510	16.7	147
405	Understanding stimuli-responsive oligomer shell of silver nanoclusters with aggregation-induced emission via chemical etching and their use as sensors. <i>Sensors and Actuators B: Chemical</i> , 2019 , 286, 198-205	8.5	13
404	Nanodendritic gold/graphene-based biosensor for tri-mode miRNA sensing. <i>Chemical Communications</i> , 2019 , 55, 1742-1745	5.8	40
403	Size-dependent selectivity and activity of CO2 photoreduction over black nano-titanias grown on dendritic porous silica particles. <i>Applied Catalysis B: Environmental</i> , 2019 , 255, 117768	21.8	20

402	Functional DNA hexahedron for real-time detection of multiple microRNAs in living cells. <i>Analytica Chimica Acta</i> , 2019 , 1078, 176-181	6.6	7
401	Ultrasensitive Detection of DNA via SI-eRAFT and in Situ Metalization Dual-Signal Amplification. <i>Analytical Chemistry</i> , 2019 , 91, 9198-9205	7.8	12
400	Fluorescence proximity assay based on a metal-organic framework platform. <i>Chemical Communications</i> , 2019 , 55, 8158-8161	5.8	5
399	A three-dimensional DNA walking machine for the ultrasensitive dual-modal detection of miRNA using a fluorometer and personal glucose meter. <i>Nanoscale</i> , 2019 , 11, 11279-11284	7.7	26
398	Gold-platinum nanoflowers as a label and as an enzyme mimic for use in highly sensitive lateral flow immunoassays: application to detection of rabbit IgG. <i>Mikrochimica Acta</i> , 2019 , 186, 357	5.8	27
397	Vibration reduction for structures: distributed schemes over directed graphs. <i>JVC/Journal of Vibration and Control</i> , 2019 , 25, 2025-2042	2	4
396	Bioinspired superwettable micropatterns for biosensing. Chemical Society Reviews, 2019, 48, 3153-3165	58.5	61
395	A Bacteriochlorin-Based Metal-Organic Framework Nanosheet Superoxide Radical Generator for Photoacoustic Imaging-Guided Highly Efficient Photodynamic Therapy. <i>Advanced Science</i> , 2019 , 6, 1900.	5 3 0 ⁶	75
394	Self-Assembly of Metal Nanoclusters for Aggregation-Induced Emission. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	21
393	Microencapsulation of Thymol in Poly(lactide-co-glycolide) (PLGA): Physical and Antibacterial Properties. <i>Materials</i> , 2019 , 12,	3.5	25
392	Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for Chemodynamic/Photodynamic Synergistic Therapy with Simultaneous Glutathione Depletion and Hypoxia Relief. <i>ACS Nano</i> , 2019 , 13, 4267-4277	16.7	315
391	Flexible and Superwettable Bands as a Platform toward Sweat Sampling and Sensing. <i>Analytical Chemistry</i> , 2019 , 91, 4296-4300	7.8	76
390	Control of capillary behavior through target-responsive hydrogel permeability alteration for sensitive visual quantitative detection. <i>Nature Communications</i> , 2019 , 10, 1036	17.4	42
389	High electroactive material loading on a carbon nanotube/carbon nanofiber as an advanced free-standing electrode for asymmetric supercapacitors. <i>Chemical Communications</i> , 2019 , 55, 4083-4086	5 ^{5.8}	23
388	Layered nanofiber sponge with an improved capacity for promoting blood coagulation and wound healing. <i>Biomaterials</i> , 2019 , 204, 70-79	15.6	111
387	Dynamic Assembly of Microspheres under an Ultrasound Field. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2440-2444	4.5	7
386	Systematic Analysis of Different Cell Spheroids with a Microfluidic Device Using Scanning Electrochemical Microscopy and Gene Expression Profiling. <i>Analytical Chemistry</i> , 2019 , 91, 4307-4311	7.8	15
385	Cobalt Sulfide Confined in N-Doped Porous Branched Carbon Nanotubes for Lithium-Ion Batteries. <i>Nano-Micro Letters</i> , 2019 , 11, 29	19.5	17

384	Preparation of PAN@TiO[Nanofibers for Fruit Packaging Materials with Efficient Photocatalytic Degradation of Ethylene. <i>Materials</i> , 2019 , 12,	3.5	20
383	Highly reactive N,N?-carbonyldiimidazole-tailored bifunctional electrocatalyst for oxygen reduction and oxygen evolution. <i>Electrochimica Acta</i> , 2019 , 307, 375-384	6.7	12
382	Structure-Dependent Optical Modulation of Propulsion and Collective Behavior of Acoustic/Light-Driven Hybrid Microbowls. <i>Advanced Functional Materials</i> , 2019 , 29, 1809003	15.6	45
381	Direct detection of label-free blood fingermarks by SECM imaging. <i>Electrochemistry Communications</i> , 2019 , 102, 89-93	5.1	5
380	Dendritic Janus Nanomotors with Precisely Modulated Coverages and Their Effects on Propulsion. <i>ACS Applied Materials & Description (Control of the Control </i>	9.5	29
379	Cancer Cell Membrane Camouflaged Nanoprobe for Catalytic Ratiometric Photoacoustic Imaging of MicroRNA in Living Mice. <i>Advanced Materials</i> , 2019 , 31, e1807888	24	61
378	ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor. <i>Biosensors and Bioelectronics</i> , 2019 , 143, 111601	11.8	16
377	Accurate detection of intracellular microRNAs using functional MoC quantum dots nanoprobe. <i>Chemical Communications</i> , 2019 , 55, 10615-10618	5.8	5
376	Uniform and Easy-To-Prepare Glycopolymer-Brush Interface for Rapid Protein (Anti-)Adhesion Sensing. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 32366-32372	9.5	11
375	Magnetized Carbon Nanotube Based Lateral Flow Immunoassay for Visual Detection of Complement Factor B. <i>Molecules</i> , 2019 , 24,	4.8	7
374	Hollow mesoporous carbon@Pt Janus nanomotors with dual response of H2O2 and near-infrared light for active cargo delivery. <i>Applied Materials Today</i> , 2019 , 17, 85-91	6.6	27
373	Thicker carbon-nanotube/manganese-oxide hybridized nanostructures as electrodes for the creation of fiber-shaped high-energy-density supercapacitors. <i>Carbon</i> , 2019 , 154, 169-177	10.4	20
372	Biosensors for early diagnosis of pancreatic cancer: a review. <i>Translational Research</i> , 2019 , 213, 67-89	11	40
371	Stretchable Conductive Fibers of Ultrahigh Tensile Strain and Stable Conductance Enabled by a Worm-Shaped Graphene Microlayer. <i>Nano Letters</i> , 2019 , 19, 6592-6599	11.5	76
370	Dual Signal Amplification by eATRP and DNA-Templated Silver Nanoparticles for Ultrasensitive Electrochemical Detection of Nucleic Acids. <i>ACS Applied Materials & Detection of Nucleic Acids</i> . <i>ACS Applied Materials & Detection of Nucleic Acids</i> . <i>ACS Applied Materials & Detection of Nucleic Acids</i> .	5 7 3 ⁵	29
369	An indirect ELISA-inspired dual-channel fluorescent immunoassay based on MPA-capped CdTe/ZnS QDs. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 5437-5444	4.4	5
368	MicroRNA Triggered DNA "Nano Wheel" for Visualizing Intracellular microRNA via Localized DNA Cascade Reaction. <i>Analytical Chemistry</i> , 2019 , 91, 9828-9835	7.8	31
367	Highly active M2P2O7@NC (M = Co and Zn) for bifunctional electrocatalysts for ORR and HER. Journal of Catalysis, 2019 , 377, 20-27	7.3	10

366	A ratiometric fluorescent probe for rapidly detecting bio-thiols in vitro and in living cells. <i>Dyes and Pigments</i> , 2019 , 171, 107688	4.6	13
365	TiO2 Nanosheets with the Au Nanocrystal-Decorated Edge for Mitochondria-Targeting Enhanced Sonodynamic Therapy. <i>Chemistry of Materials</i> , 2019 , 31, 9105-9114	9.6	70
364	Non-Fenton-Type Hydroxyl Radical Generation and Photothermal Effect by Mitochondria-Targeted WSSe/MnO2 Nanocomposite Loaded with Isoniazid for Synergistic Anticancer Treatment. <i>Advanced Functional Materials</i> , 2019 , 29, 1903850	15.6	40
363	Non-Enzymatic Electrochemical Sensor Based on Sliver Nanoparticle-Decorated Carbon Nanotubes. <i>Molecules</i> , 2019 , 24,	4.8	10
362	Rail-Assisted Dynamic Assembly of Metallic Nanowires. <i>Advanced Intelligent Systems</i> , 2019 , 1, 1900100	6	1
361	Application of in Vivo Fluorescence Imaging and Metal Ion Detection for Investigation of Bis(ethylmaltolato) Oxidovanadium (IV) on Alzheimer's Disease. <i>Chinese Journal of Analytical Chemistry</i> , 2019 , 47, 1680-1688	1.6	
360	Highly Sensitive Thrombin Detection by Combination of Click Chemistry and Surface-Initiated Polymerization. <i>Journal of the Electrochemical Society</i> , 2019 , 166, B1387-B1391	3.9	2
359	Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. <i>Mikrochimica Acta</i> , 2019 , 187, 70	5.8	51
358	A dual signal amplification strategy combining thermally initiated SI-RAFT polymerization and DNA-templated silver nanoparticles for electrochemical determination of DNA. <i>Mikrochimica Acta</i> , 2019 , 187, 35	5.8	4
357	A 3D Printed Hanging Drop Dripper for Tumor Spheroids Analysis Without Recovery. <i>Scientific Reports</i> , 2019 , 9, 19717	4.9	19
356	Effect of surface topology morphologies of silica nanocarriers on the loading of Ag nanoparticles and antibacterial performance. <i>Journal of Alloys and Compounds</i> , 2019 , 783, 136-144	5.7	20
355	Ultrasensitive DNA biosensor based on electrochemical atom transfer radical polymerization. <i>Biosensors and Bioelectronics</i> , 2019 , 131, 193-199	11.8	22
354	Electrochemical DNA Biosensing via Electrochemically Controlled Reversible Addition-Fragmentation Chain Transfer Polymerization. <i>ACS Sensors</i> , 2019 , 4, 235-241	9.2	26
353	Ultrathin Tellurium Oxide/Ammonium Tungsten Bronze Nanoribbon for Multimodality Imaging and Second Near-Infrared Region Photothermal Therapy. <i>Nano Letters</i> , 2019 , 19, 1179-1189	11.5	62
352	Synthesis of Luminescent Gold Nanoclusters Embedded Goose Feathers for Facile Preparation of Au(I) Complexes with Aggregation-Induced Emission. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 592-598	8.3	9
351	Inkjet printed 2D SnS2 nanosheets for ammonia gas sensor. <i>Materials Research Express</i> , 2019 , 6, 015025	1.7	5
350	Chemical etching of pH-sensitive aggregation-induced emission-active gold nanoclusters for ultra-sensitive detection of cysteine. <i>Nanoscale</i> , 2018 , 11, 294-300	7.7	27
349	Dual-emissive gold nanoclusters for label-free and separation-free ratiometric fluorescence sensing of 4-nitrophenol based on the inner filter effect. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5033-	- 7 d38	29

348	Silver nanoparticle-loaded microgel-based etalons for HO sensing RSC Advances, 2018, 8, 15567-15574	1 3.7	11
347	Peroxidase-like Fe3O4 nanocomposite for activatable reactive oxygen species generation and cancer theranostics. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1184-1194	7.8	29
346	In Situ Synthesis of CuS Nanoparticle-Doped Poly(N-isopropylacrylamide)-Based Microgels for Near-Infrared Triggered Photothermal Therapy. <i>ACS Applied Nano Materials</i> , 2018 , 1, 1776-1783	5.6	13
345	Carbon nanotubes and manganese oxide hybrid nanostructures as high performance fiber supercapacitors. <i>Communications Chemistry</i> , 2018 , 1,	6.3	22
344	AIE-based superwettable microchips for evaporation and aggregation induced fluorescence enhancement biosensing. <i>Biosensors and Bioelectronics</i> , 2018 , 111, 124-130	11.8	49
343	pH-Responsive aggregation-induced emission of Au nanoclusters and crystallization of the Au(I)Ehiolate shell. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 923-928	7.8	28
342	Plasmonic Resonance Energy Transfer Enhanced Photodynamic Therapy with Au@SiO@CuO/Perfluorohexane Nanocomposites. <i>ACS Applied Materials & District Aumorane States</i> , 2018, 10, 69	99 :5 00	12 ⁴⁷
341	Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport. <i>Nano Research</i> , 2018 , 11, 4074-4081	10	31
340	Highly-sensitive microRNA detection based on bio-bar-code assay and catalytic hairpin assembly two-stage amplification. <i>Analytica Chimica Acta</i> , 2018 , 1004, 1-9	6.6	32
339	A dual-cell device designed as an oxidase mimic and its use for the study of oxidase-like nanozymes. <i>Chemical Communications</i> , 2018 , 54, 818-820	5.8	13
338	Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. <i>Food Chemistry</i> , 2018 , 252, 9-15	8.5	46
337	Superwettable Electrochemical Biosensor toward Detection of Cancer Biomarkers. <i>ACS Sensors</i> , 2018 , 3, 72-78	9.2	56
336	Electrochemically mediated polymerization for highly sensitive detection of protein kinase activity. <i>Biosensors and Bioelectronics</i> , 2018 , 110, 52-57	11.8	33
335	CREPT facilitates colorectal cancer growth through inducing Wnt/Etatenin pathway by enhancing p300-mediated Etatenin acetylation. <i>Oncogene</i> , 2018 , 37, 3485-3500	9.2	33
334	Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission. <i>Critical Reviews in Analytical Chemistry</i> , 2018 , 48, 330-336	5.2	7
333	Broadband antireflective superhydrophilic antifogging nano-coatings based on three-layer system. <i>Microporous and Mesoporous Materials</i> , 2018 , 255, 84-93	5.3	31
332	Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers. <i>Applied Surface Science</i> , 2018 , 428, 819-824	6.7	29
331	Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination. <i>Sensors and Actuators B: Chemical</i> , 2018 , 257, 23-28	8.5	58

330	Electrochemically mediated in situ growth of electroactive polymers for highly sensitive detection of double-stranded DNA without sequence-preference. <i>Biosensors and Bioelectronics</i> , 2018 , 101, 1-6	11.8	29
329	Liquid Exfoliation of Few-layer 1T-TaS2⊠ Se x Superconductors. <i>Journal of Superconductivity and Novel Magnetism</i> , 2018 , 31, 1005-1011	1.5	3
328	MoS2 quantum dots-combined zirconium-metalloporphyrin frameworks: Synergistic effect on electron transfer and application for bioassay. <i>Sensors and Actuators B: Chemical</i> , 2018 , 273, 566-573	8.5	15
327	Target-Triggered Catalytic Hairpin Assembly-Induced Core-Satellite Nanostructures for High-Sensitive "Off-to-On" SERS Detection of Intracellular MicroRNA. <i>Analytical Chemistry</i> , 2018 , 90, 10591-10599	7.8	57
326	Catalytic hairpin assembly gel assay for multiple and sensitive microRNA detection. <i>Theranostics</i> , 2018 , 8, 2646-2656	12.1	25
325	Multiplex microRNA imaging in living cells using DNA-capped-Au assembled hydrogels. <i>Chemical Science</i> , 2018 , 9, 7419-7425	9.4	54
324	Intelligent MnO/CuS for Multimode Imaging Diagnostic and Advanced Single-Laser Irradiated Photothermal/Photodynamic Therapy. <i>ACS Applied Materials & Diagnostic amp; Interfaces</i> , 2018 , 10, 17732-17741	9.5	66
323	Metal-to-Ligand Charge-Transfer-based Visual Detection of Alkaline Phosphatase Activity. <i>Analytical Sciences</i> , 2018 , 34, 341-347	1.7	2
322	Synthesis of poly (-isopropylacrylamide)(acrylic acid) microgel-entrapped CdS quantum dots and their photocatalytic degradation of an organic dye <i>RSC Advances</i> , 2018 , 8, 16850-16857	3.7	9
321	MoS2 nanoparticles coupled to SnS2 nanosheets: The structural and electronic modulation for synergetic electrocatalytic hydrogen evolution. <i>Journal of Catalysis</i> , 2018 , 366, 8-15	7.3	32
320	Enhanced lateral flow assay with double conjugates for the detection of exosomes. <i>Science China Chemistry</i> , 2018 , 61, 1423-1429	7.9	13
319	Facile synthesis of mesoporous organosilica nanobowls with bridged silsesquioxane framework by one-pot growth and dissolution mechanism. <i>Journal of Colloid and Interface Science</i> , 2018 , 528, 379-388	9.3	15
318	Superwettable microchips with improved spot homogeneity toward sensitive biosensing. <i>Biosensors and Bioelectronics</i> , 2018 , 102, 418-424	11.8	30
317	Renewable superwettable biochip for miRNA detection. <i>Sensors and Actuators B: Chemical</i> , 2018 , 258, 715-721	8.5	28
316	Near-infrared triggered strand displacement amplification for MicroRNA quantitative detection in single living cells. <i>Chemical Science</i> , 2018 , 9, 1753-1759	9.4	64
315	Rattle-type Au@CuS hollow mesoporous nanocrystals with enhanced photothermal efficiency for intracellular oncogenic microRNA detection and chemo-photothermal therapy. <i>Biomaterials</i> , 2018 , 158, 23-33	15.6	45
314	Synergistic Inhibitory Effect of GQDs-Tramiprosate Covalent Binding on Amyloid Aggregation. <i>ACS Chemical Neuroscience</i> , 2018 , 9, 817-823	5.7	28
313	Imaging multiple microRNAs in living cells using ATP self-powered strand-displacement cascade amplification. <i>Chemical Science</i> , 2018 , 9, 1184-1190	9.4	52

312	Tunable dendrimer-like porous silica nanospheres: Effects of structures and stacking manners on surface wettability. <i>Journal of Alloys and Compounds</i> , 2018 , 732, 70-79	5.7	15
311	Fabricating Pt-decorated three dimensional N-doped carbon porous microspherical cavity catalyst for advanced oxygen reduction reaction. <i>Carbon</i> , 2018 , 128, 38-45	10.4	25
310	Disulfide-Bridged Organosilica Frameworks: Designed, Synthesis, Redox-Triggered Biodegradation, and Nanobiomedical Applications. <i>Advanced Functional Materials</i> , 2018 , 28, 1707325	15.6	106
309	Superwettable nanodendritic gold substrates for direct miRNA SERS detection. <i>Nanoscale</i> , 2018 , 10, 20990-20994	7.7	47
308	Cap-free dual stimuli-responsive biodegradable nanocarrier for controlled drug release and chemo-photothermal therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 8188-8195	7.3	7
307	Flexible Superwettable Tapes for On-Site Detection of Heavy Metals. <i>Analytical Chemistry</i> , 2018 , 90, 14105-14110	7.8	36
306	Bioinspired DNA-Inorganic Hybrid Nanoflowers Combined with a Personal Glucose Meter for Onsite Detection of miRNA. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 42050-42057	9.5	39
305	Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. <i>Biomaterials</i> , 2018 , 185, 301-309	15.6	87
304	A Semimetal-Like Molybdenum Carbide Quantum Dots Photoacoustic Imaging and Photothermal Agent with High Photothermal Conversion Efficiency. <i>Materials</i> , 2018 , 11,	3.5	22
303	Dendritic Silica Particles with Well-Dispersed Ag Nanoparticles for Robust Antireflective and Antibacterial Nanocoatings on Polymeric Glass. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 140	07 ⁸ 13140	081 ⁸
302	Wetting transition in nanochannels for biomimetic free-blocking on-demand drug transport. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 6269-6277	7.3	4
301	DNA-Mediated Nanoscale Metal-Organic Frameworks for Ultrasensitive Photoelectrochemical Enzyme-Free Immunoassay. <i>Analytical Chemistry</i> , 2018 , 90, 12284-12291	7.8	59
300	Metal Drganic Framework Nanoshuttle for Synergistic Photodynamic and Low-Temperature Photothermal Therapy. <i>Advanced Functional Materials</i> , 2018 , 28, 1804634	15.6	177
299	Wettability alteration in a functional capillary tube for visual quantitative point of care testing. <i>Analyst, The</i> , 2018 , 143, 3001-3005	5	2
298	Erythrocyte-Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma. <i>ACS Nano</i> , 2018 , 12, 5241-5252	16.7	232
297	Methyl Orange removal by a novel PEI-AuNPs-hemin nanocomposite. <i>Journal of Environmental Sciences</i> , 2017 , 53, 278-283	6.4	11
296	Novel yolk-shell polymer/carbon@Au nanocomposites by using dendrimer-like mesoporous silica nanoparticles as hard template. <i>Journal of Alloys and Compounds</i> , 2017 , 700, 83-91	5.7	22
295	Br-PADAP embedded in cellulose acetate electrospun nanofibers: Colorimetric sensor strips for visual uranyl recognition. <i>Journal of Hazardous Materials</i> , 2017 , 329, 205-210	12.8	40

294	Enrichment and Viability Inhibition of Circulating Tumor Cells on a Dual Acid-Responsive Composite Nanofiber Film. <i>ChemMedChem</i> , 2017 , 12, 529-536	3.7	2
293	One-Step Hydrothermal Fabrication of Three-dimensional MoS Nanoflower using Polypyrrole as Template for Efficient Hydrogen Evolution Reaction. <i>Scientific Reports</i> , 2017 , 7, 42309	4.9	73
292	Oxidase-mimicking activity of the nitrogen-doped FeC@C composites. <i>Chemical Communications</i> , 2017 , 53, 3882-3885	5.8	47
291	Fabricating Aptamer-Conjugated PEGylated-MoS2/Cu1.8S Theranostic Nanoplatform for Multiplexed Imaging Diagnosis and Chemo-Photothermal Therapy of Cancer. <i>Advanced Functional Materials</i> , 2017 , 27, 1605592	15.6	80
290	Metal-to-ligand charge-transfer: Applications to visual detection of Egalactosidase activity and sandwich immunoassay. <i>Talanta</i> , 2017 , 167, 253-259	6.2	14
289	Micro-/Nanomachines: Fuel-Free Synthetic Micro-/Nanomachines (Adv. Mater. 9/2017). <i>Advanced Materials</i> , 2017 , 29,	24	2
288	One-pot synthesis of redox-triggered biodegradable hybrid nanocapsules with a disulfide-bridged silsesquioxane framework for promising drug delivery. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 4455-4	463	41
287	A Voltage-Responsive Free-Blockage Controlled-Release System Based on Hydrophobicity Switching. <i>ChemPhysChem</i> , 2017 , 18, 1317-1323	3.2	4
286	Size-tunable, highly sensitive microelectrode arrays enabled by polymer pen lithography. <i>Soft Matter</i> , 2017 , 13, 3685-3689	3.6	10
285	Enhanced Electrochemiluminescence of One-Dimensional Self-Assembled Porphyrin Hexagonal Nanoprisms. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	33
284	Smart Design of Small Pd Nanoparticles Confined in Hollow Carbon Nanospheres with Large Center-Radial Mesopores. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 2516-2516	2.3	
283	Smart Design of Small Pd Nanoparticles Confined in Hollow Carbon Nanospheres with Large Center-Radial Mesopores. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 2517-2524	2.3	8
282	Voltage-Responsive Controlled Release Film with Cargo Release Self-Monitoring Property Based on Hydrophobicity Switching. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 10992-10999	9.5	7
281	Fabricating Pt/Sn-InO Nanoflower with Advanced Oxygen Reduction Reaction Performance for High-Sensitivity MicroRNA Electrochemical Detection. <i>Analytical Chemistry</i> , 2017 , 89, 648-655	7.8	44
2 80	Fuel-Free Synthetic Micro-/Nanomachines. Advanced Materials, 2017, 29, 1603250	24	235
279	Superwettable Microchips as a Platform toward Microgravity Biosensing. ACS Nano, 2017, 11, 621-626	16.7	53
278	Aptamer-Conjugated Graphene Quantum Dots/Porphyrin Derivative Theranostic Agent for Intracellular Cancer-Related MicroRNA Detection and Fluorescence-Guided Photothermal/Photodynamic Synergetic Therapy. <i>ACS Applied Materials & Description</i> (2017), 9, 159-169.	9.5 1 66	135
277	High-sensitive surface plasmon resonance microRNA biosensor based on streptavidin functionalized gold nanorods-assisted signal amplification. <i>Analytica Chimica Acta</i> , 2017 , 954, 114-120	6.6	39

(2017-2017)

276	Unlocking the Electrocatalytic Activity of Antimony for CO Reduction by Two-Dimensional Engineering of the Bulk Material. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14718-14722	16.4	126
275	Unlocking the Electrocatalytic Activity of Antimony for CO2 Reduction by Two-Dimensional Engineering of the Bulk Material. <i>Angewandte Chemie</i> , 2017 , 129, 14910-14914	3.6	45
274	Magnetized carbon nanotubes for visual detection of proteins directly in whole blood. <i>Analytica Chimica Acta</i> , 2017 , 993, 79-86	6.6	25
273	Ultrasound propulsion of micro-/nanomotors. <i>Applied Materials Today</i> , 2017 , 9, 493-503	6.6	131
272	Consensus-based distributed sensor fusion over a network 2017 ,		1
271	Functionalized Polyethyleneimine-gold Nanoparticles-Porphyrin Nanocomposite for Electrochemical Glucose Biosensing. <i>International Journal of Electrochemical Science</i> , 2017 , 5092-5103	2.2	5
270	Controllable Swarming and Assembly of Micro/Nanomachines. <i>Micromachines</i> , 2017 , 9,	3.3	28
269	Lateral flow assay for carbohydrate antigen 19-9 in whole blood by using magnetized carbon nanotubes. <i>Mikrochimica Acta</i> , 2017 , 184, 4287-4294	5.8	20
268	Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21560-21569	13	37
267	Hyaluronic Acid Encapsulated CuS Gel-Mediated Near-Infrared Laser-Induced Controllable Transdermal Drug Delivery for Sustained Therapy. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 6786-6794	8.3	13
266	Universal and one-step visualization of latent fingermarks on various surfaces using hydrophilic cellulose membrane and dye aqueous solution. <i>Science China Chemistry</i> , 2017 , 60, 1250-1257	7.9	8
265	Electrochemically Mediated Surface-Initiated de Novo Growth of Polymers for Amplified Electrochemical Detection of DNA. <i>Analytical Chemistry</i> , 2017 , 89, 9253-9259	7.8	52
264	5-Carboxyfluorescein: intrinsic peroxidase-like catalytic activity and its application in the biomimetic synthesis of polyaniline nanoplatelets. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5937-5941	7.3	7
263	Sensitive and selective colorimetric assay of alkaline phosphatase activity with Cu(II)-phenanthroline complex. <i>Talanta</i> , 2017 , 163, 146-152	6.2	39
262	Facile colorimetric assay of alkaline phosphatase activity using Fe(II)-phenanthroline reporter. <i>Analytica Chimica Acta</i> , 2017 , 950, 170-177	6.6	46
261	Hollow Carbon Nanospheres with Tunable Hierarchical Pores for Drug, Gene, and Photothermal Synergistic Treatment. <i>Small</i> , 2017 , 13, 1602592	11	92
2 60	Electrochemical sensing platform based on molecularly imprinted polymer decorated N,S co-doped activated graphene for ultrasensitive and selective determination of cyclophosphamide. <i>Talanta</i> , 2017 , 164, 601-607	6.2	49
259	Systematic study of dye loaded small mesoporous silica nanoparticles for detecting latent fingerprints on various substrates. <i>Journal of Porous Materials</i> , 2017 , 24, 13-20	2.4	25

258	Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. <i>Food Chemistry</i> , 2017 , 219, 179-184	8.5	60
257	Free-Blockage Mesoporous Anticancer Nanoparticles Based on ROS-Responsive Wetting Behavior of Nanopores. <i>Small</i> , 2017 , 13, 1701942	11	30
256	Candle Soot Coating for Latent Fingermark Enhancement on Various Surfaces. Sensors, 2017, 17,	3.8	5
255	Click chemistry-based aptasensor for highly sensitive electrochemical detection of thrombin. <i>Analytical Methods</i> , 2017 , 9, 3825-3830	3.2	6
254	Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and l-ascorbic acid. <i>Carbon</i> , 2016 , 96, 1034-1042	10.4	145
253	An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224. <i>Talanta</i> , 2016 , 146, 648-54	6.2	61
252	Preparation of amidoximated coaxial electrospun nanofibers for uranyl uptake and their electrochemical properties. <i>Separation and Purification Technology</i> , 2016 , 171, 44-51	8.3	16
251	One-pot synthesis of nitrogen-rich carbon dots decorated graphene oxide as metal-free electrocatalyst for oxygen reduction reaction. <i>Carbon</i> , 2016 , 109, 402-410	10.4	79
250	Ultrasensitive and Multiple Disease-Related MicroRNA Detection Based on Tetrahedral DNA Nanostructures and Duplex-Specific Nuclease-Assisted Signal Amplification. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 33499-33505	9.5	44
249	Coaxial electrospinning of polycaprolactone@chitosan: Characterization and silver nanoparticles incorporation for antibacterial activity. <i>Reactive and Functional Polymers</i> , 2016 , 107, 87-92	4.6	44
248	A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 8195-8202	4.4	22
247	Recent advances in the chemical imaging of human fingermarks (a review). <i>Analyst, The</i> , 2016 , 141, 617	2 5 6189	47
246	Superhydrophilic cotton thread with temperature-dependent pattern for sensitive nucleic acid detection. <i>Biosensors and Bioelectronics</i> , 2016 , 86, 951-957	11.8	32
245	Combination of chemical etching of gold nanoclusters with aggregation-induced emission for preparation of new phosphors for the development of UV-driven phosphor-converted white light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 11482-11487	7.1	18
244	An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2016 , 781, 198-203	4.1	14
243	Chemical Etching of Bovine Serum Albumin-Protected Au25 Nanoclusters for Label-Free and Separation-Free Ratiometric Fluorescent Detection of Tris(2-carboxyethyl)phosphine. <i>Analytical Chemistry</i> , 2016 , 88, 11193-11198	7.8	34
242	Cell micropatterns based on silicone-oil-modified slippery surfaces. <i>Nanoscale</i> , 2016 , 8, 18612-18615	7.7	27
241	Zirconium-Based Porphyrinic Metal-Organic Framework (PCN-222): Enhanced Photoelectrochemical Response and Its Application for Label-Free Phosphoprotein Detection. <i>Analytical Chemistry</i> , 2016 , 88, 11207-11212	7.8	106

(2016-2016)

240	Strong Antibacterial Polydopamine Coatings Prepared by a Shaking-assisted Method. <i>Scientific Reports</i> , 2016 , 6, 24420	4.9	99
239	An electrochemical non-enzymatic immunosensor for ultrasensitive detection of microcystin-LR using carbon nanofibers as the matrix. <i>Sensors and Actuators B: Chemical</i> , 2016 , 233, 624-632	8.5	45
238	Latent Fingermarks Enhancement in Deep Eutectic Solvent by Co-electrodepositing Silver and Copper Particles on Metallic Substrates. <i>Electrochimica Acta</i> , 2016 , 211, 437-444	6.7	14
237	Electrochemical hydrogen sulfide biosensors. <i>Analyst, The</i> , 2016 , 141, 1185-95	5	102
236	Emergence of superconductivity in doped glassy-carbon. <i>Carbon</i> , 2016 , 99, 585-590	10.4	23
235	Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 3107-14	9.5	210
234	Effect of harpin on control of postharvest decay and resistant responses of tomato fruit. <i>Postharvest Biology and Technology</i> , 2016 , 112, 241-246	6.2	22
233	Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. <i>Biomaterials</i> , 2016 , 91, 90-127	15.6	199
232	Current control by electrode coatings formed by polymerization of dopamine at prussian blue-modified electrodes. <i>Analyst, The</i> , 2016 , 141, 2067-71	5	4
231	Broadband antireflective superhydrophobic self-cleaning coatings based on novel dendritic porous particles. <i>RSC Advances</i> , 2016 , 6, 7864-7871	3.7	28
230	Microelectromechanical System-Based Sensing Arrays for Comparative in Vitro Nanotoxicity Assessment at Single Cell and Small Cell-Population Using Electrochemical Impedance Spectroscopy. <i>ACS Applied Materials & Discrete Spectroscopy</i> . ACS Applied Materials & Discrete Spectroscopy. ACS Applied Materials & Discrete Spectroscopy. ACS Applied Materials & Discrete Spectroscopy.	9.5	27
229	Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. <i>Scientia Horticulturae</i> , 2016 , 198, 304-310	4.1	30
228	Cathodic electrochemiluminescence of singlet oxygen induced by the electroactive zinc porphyrin in aqueous media. <i>Electrochimica Acta</i> , 2016 , 190, 64-68	6.7	17
227	Atom-Thin SnS2-xSex with Adjustable Compositions by Direct Liquid Exfoliation from Single Crystals. <i>ACS Nano</i> , 2016 , 10, 755-62	16.7	33
226	A signal-on electrochemical DNA biosensor based on potential-assisted Cu(I)-catalyzed azide-alkyne cycloaddition mediated labeling of hairpin-like oligonucleotide with electroactive probe. <i>Talanta</i> , 2016 , 147, 516-22	6.2	11
225	Horseradish Peroxidase-modified Single-walled Carbon Nanotubes as Biocathode for Assembling a Membrane-less Glucose-H2O2 Biofuel Cell. <i>Current Nanoscience</i> , 2016 , 12, 405-410	1.4	2
224	A Nanostructured SERS Switch Based on Molecular Beacon-Controlled Assembly of Gold Nanoparticles. <i>Nanomaterials</i> , 2016 , 6,	5.4	7
223	Reverse-Bumpy-Ball-Type-Nanoreactor-Loaded Nylon Membranes as Peroxidase-Mimic Membrane Reactors for a Colorimetric Assay for HD\(\textit{D}\)\(\textit{D}\)\(\textit{Sensors}\), 2016, 16, 465	3.8	5

222	A Facile Graphene Nanosheets-based Electrochemical Sensor for Sensitive Detection of Honokiol in Traditional Chinese Medicine. <i>Electroanalysis</i> , 2016 , 28, 508-515	3	5
221	A Green Route for Substrate-Independent Oil-Repellent Coatings. <i>Scientific Reports</i> , 2016 , 6, 38016	4.9	6
220	A Versatile Multiple Target Detection System Based on DNA Nano-assembled Linear FRET Arrays. <i>Scientific Reports</i> , 2016 , 6, 26879	4.9	14
219	The alternative strategy for designing covalent drugs through kinetic effects of pi-stacking on the self-assembled nanoparticles: a model study with antibiotics. <i>Nanotechnology</i> , 2016 , 27, 445101	3.4	1
218	Giant exchange bias in Mn2FeGa with hexagonal structure. <i>Applied Physics Letters</i> , 2016 , 109, 032408	3.4	12
217	An Easily Fabricated Electrochemical Sensor Based on a Graphene-Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine. <i>Sensors</i> , 2016 , 16,	3.8	19
216	Zirconium-metalloporphyrin frameworks as a three-in-one platform possessing oxygen nanocage, electron media, and bonding site for electrochemiluminescence protein kinase activity assay. <i>Nanoscale</i> , 2016 , 8, 11649-57	7.7	45
215	pH-Responsive nano sensing valve with self-monitoring state property based on hydrophobicity switching. <i>RSC Advances</i> , 2016 , 6, 52292-52299	3.7	9
214	Cobalt hexacyanoferrate electrodeposited on electrode with the assistance of laponite: The enhanced electrochemical sensing of captopril. <i>Electrochimica Acta</i> , 2016 , 198, 32-39	6.7	22
213	A novel sensitive and selective electrochemical sensor based on molecularly imprinted polymer on a nanoporous gold leaf modified electrode for warfarin sodium determination. <i>RSC Advances</i> , 2016 , 6, 43724-43731	3.7	29
212	Value of the Debris of Reduction Sculpture: Thiol Etching of Au Nanoclusters for Preparing Water-Soluble and Aggregation-Induced Emission-Active Au(I) Complexes as Phosphorescent Copper Ion Sensor. <i>Analytical Chemistry</i> , 2016 , 88, 6071-7	7.8	42
211	Inhibition of Aurora kinases induces apoptosis and autophagy via AURKB/p70S6K/RPL15 axis in human leukemia cells. <i>Cancer Letters</i> , 2016 , 382, 215-230	9.9	23
210	Turn-On Colorimetric Platform for Dual Activity Detection of Acid and Alkaline Phosphatase in Human Whole Blood. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 3040-3045	4.5	33
209	Targeting Na+/K+ -translocating adenosine triphosphatase in cancer treatment. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2015 , 42, 427-43	3	36
208	Preparation of catalytic films of the Au nanoparticle-carbon composite tubular arrays. <i>Chemical Communications</i> , 2015 , 51, 6333-6	5.8	7
207	Formation of copper nanoparticles on poly(thymine) through surface-initiated enzymatic polymerization and its application for DNA detection. <i>Analyst, The</i> , 2015 , 140, 5678-84	5	27
206	Wettability behavior of special microscale ZnO nail-coated mesh films for oil-water separation. Journal of Colloid and Interface Science, 2015 , 458, 79-86	9.3	42
205	Intracellular and Organic miRNA In Situ Detection. Springer Briefs in Molecular Science, 2015, 87-98	0.6	

(2015-2015)

2	204	Self-Powered Triboelectric Nanosensor with Poly(tetrafluoroethylene) Nanoparticle Arrays for Dopamine Detection. <i>ACS Nano</i> , 2015 , 9, 8376-83	16.7	147	
2	203	An ultrasensitive electrochemical immunosensor for apolipoprotein E4 based on fractal nanostructures and enzyme amplification. <i>Biosensors and Bioelectronics</i> , 2015 , 71, 396-400	11.8	29	
2	202	Capillary-driven spontaneous oil/water separation by superwettable twines. <i>Nanoscale</i> , 2015 , 7, 13164-	7 7.7	16	
2	201	Highly sensitive detection of sequence-specific DNA with morpholino-functionalized magnetic microspheres. <i>Analytical Methods</i> , 2015 , 7, 6712-6717	3.2	6	
2	200	Clinical association between pharmacogenomics and adverse drug reactions. <i>Drugs</i> , 2015 , 75, 589-631	12.1	36	
1	<u> 1</u> 99	Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies. <i>Drug Design, Development and</i>	4.4	19	
1	198	Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. <i>Nano Research</i> , 2015 , 8, 2004-2014	10	68	
1	97	Piezotronic-effect enhanced drug metabolism and sensing on a single ZnO nanowire surface with the presence of human cytochrome P450. <i>ACS Nano</i> , 2015 , 9, 3159-68	16.7	20	
1	196	Latent fingerprint enhancement on conductive substrates using electrodeposition of copper. <i>Science China Chemistry</i> , 2015 , 58, 1200-1205	7.9	10	
1	95	Dendrimer-like hybrid particles with tunable hierarchical pores. <i>Nanoscale</i> , 2015 , 7, 6173-84	7.7	53	
1	94	Hidden Dityrosine Residues in Protein-Protected Gold Nanoclusters. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 12065-12070	3.8	27	
1	193	Simple and fast electrochemical detection of sequence-specific DNA via click chemistry-mediated labeling of hairpin DNA probes with ethynylferrocene. <i>Analyst, The</i> , 2015 , 140, 4154-61	5	15	
1	192	Multifunctional Poly(L-lactide)-Polyethylene Glycol-Grafted Graphene Quantum Dots for Intracellular MicroRNA Imaging and Combined Specific-Gene-Targeting Agents Delivery for Improved Therapeutics. <i>ACS Applied Materials & Delivery Interfaces</i> , 2015 , 7, 11015-23	9.5	92	
1	191	Highly sensitive and selective microRNA detection based on DNA-bio-bar-code and enzyme-assisted strand cycle exponential signal amplification. <i>Analytical Chemistry</i> , 2015 , 87, 4334-40	7.8	71	
1	190	Self-powered electrochemical water treatment system for sterilization and algae removal using water wave energy. <i>Nano Energy</i> , 2015 , 18, 81-88	17.1	55	
1	189	Sequential Electro-Deposition of Highly Stable Cu-Fe Prussian Blue Coordination Polymers at Indium Tin Oxide Electrode: Characterization and the Enhanced Sensing Application. <i>Journal of the Electrochemical Society</i> , 2015 , 162, H918-H921	3.9	2	
1	288	Water-Soluble Fluorescent CdTe/ZnSe Core/Shell Quantum Dot: Aqueous Phase Synthesis and Cytotoxicity Assays. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 4648-52	1.3	6	
1	187	Ferrocyanide-Ferricyanide Redox Couple Induced Electrochemiluminescence Amplification of Carbon Dots for Ultrasensitive Sensing of Glutathione. <i>Analytical Chemistry</i> , 2015 , 87, 11150-6	7.8	65	

186	Graphene quantum dots for the inhibition of hamyloid aggregation. <i>Nanoscale</i> , 2015 , 7, 19060-5	7.7	90
185	DACT2 is a functional tumor suppressor through inhibiting Wnt/Etatenin pathway and associated with poor survival in colon cancer. <i>Oncogene</i> , 2015 , 34, 2575-85	9.2	39
184	Magnetic zirconium hexacyanoferrate(II) nanoparticle as tracing tag for electrochemical DNA assay. <i>Analytical Chemistry</i> , 2015 , 87, 9093-100	7.8	39
183	Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2015 , 42, 999-1024	3	48
182	A biomimetic enzyme modified electrode for H2O2 highly sensitive detection. <i>Analyst, The</i> , 2015 , 140, 7792-8	5	16
181	Detection of zinc finger protein (EGR1) based on electrogenerated chemiluminescence from singlet oxygen produced in a nanoclay-supported porphyrin environment. <i>Analytical Chemistry</i> , 2015 , 87, 9155-	6 28	26
180	miRNA Electrochemical Detection. Springer Briefs in Molecular Science, 2015, 37-56	0.6	
179	A free-blockage controlled release system based on the hydrophobic/hydrophilic conversion of mesoporous silica nanopores. <i>Chemistry - A European Journal</i> , 2015 , 21, 2680-5	4.8	15
178	Dual-cargo selectively controlled release based on a pH-responsive mesoporous silica system. <i>ChemPhysChem</i> , 2015 , 16, 607-13	3.2	7
177	Substrate-independent and large-area synthesis of carbon nanotube thin films using ZnO nanorods as template and dopamine as carbon precursor. <i>Carbon</i> , 2015 , 83, 275-281	10.4	28
176	Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor- B mediated signaling pathways in activated THP-1 macrophages. <i>Toxicology</i> , 2015 , 327, 62-76	4.4	136
175	One-step conjugation of aminoferrocene to phosphate groups as electroactive probes for electrochemical detection of sequence-specific DNA. <i>Biosensors and Bioelectronics</i> , 2015 , 65, 71-7	11.8	25
174	Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2015 , 274, 1173-1179	8.9	62
173	PNA-based DNA assay with attomolar detection limit based on polygalacturonic acid mediated in-situ deposition of metallic silver on a gold electrode. <i>Mikrochimica Acta</i> , 2015 , 182, 427-434	5.8	14
172	Chemical etching of bovine serum albumin-protected Au25 nanoclusters for label-free and separation-free detection of cysteamine. <i>Biosensors and Bioelectronics</i> , 2015 , 66, 155-61	11.8	52
171	Ultrasensitive electrochemical DNA biosensor by exploiting hematin as efficient biomimetic catalyst toward in situ metallization. <i>Biosensors and Bioelectronics</i> , 2015 , 63, 269-275	11.8	26
170	Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. <i>Biosensors and Bioelectronics</i> , 2015 , 64, 499-504	11.8	111
169	Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction. <i>Scientific Reports</i> , 2015 , 5, 17542	4.9	124

168	Ultratrace DNA Detection Based on the Condensing-Enrichment Effect of Superwettable Microchips. <i>Advanced Materials</i> , 2015 , 27, 6878-84	24	104
167	Tunable Fabrication of Molybdenum Disulfide Quantum Dots for Intracellular MicroRNA Detection and Multiphoton Bioimaging. <i>Small</i> , 2015 , 11, 4158-64	11	148
166	Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 937-68	4.4	15
165	Novel targeting of PEGylated liposomes for codelivery of TGF-II siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 4441-70	4.4	13
164	Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 349-417	4.4	21
163	Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 993-1026	4.4	17
162	Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 425-64	4.4	36
161	The pan-inhibitor of Aurora kinases danusertib induces apoptosis and autophagy and suppresses epithelial-to-mesenchymal transition in human breast cancer cells. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 1027-62	4.4	23
160	Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 537-60	4.4	30
159	Schisandrin B inhibits cell growth and induces cellular apoptosis and autophagy in mouse hepatocytes and macrophages: implications for its hepatotoxicity. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 2001-27	4.4	15
158	Recent Advance on Mesoporous Silica Nanoparticles-Based Controlled Release System: Intelligent Switches Open up New Horizon. <i>Nanomaterials</i> , 2015 , 5, 2019-2053	5.4	51
157	Induction of apoptosis and autophagy via sirtuin1- and PI3K/Akt/mTOR-mediated pathways by plumbagin in human prostate cancer cells. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 1511-54	4.4	74
156	Plumbagin suppresses epithelial to mesenchymal transition and stemness via inhibiting Nrf2-mediated signaling pathway in human tongue squamous cell carcinoma cells. <i>Drug Design, Development and Therapy,</i> 2015 , 9, 5511-51	4.4	16
155	Controllable drug uptake and nongenomic response through estrogen-anchored cyclodextrin drug complex. <i>International Journal of Nanomedicine</i> , 2015 , 10, 4717-30	7.3	2
154	Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway. <i>Drug Design, Development</i>	4.4	37
153	Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 575-601	4.4	38
152	Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells. <i>Drug</i>	4.4	19
151	The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 1627-52	4.4	56

150	Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 1601-26	4.4	60
149	Inhibition of mitotic Aurora kinase A by alisertib induces apoptosis and autophagy of human gastric cancer AGS and NCI-N78 cells. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 487-508	4.4	25
148	Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. <i>Sensors and Actuators B: Chemical</i> , 2015 , 218, 229-236	8.5	152
147	Self-interconnecting Pt nanowire network electrode for electrochemical amperometric biosensor. <i>Nanoscale</i> , 2015 , 7, 11460-7	7.7	37
146	miRNA Optical Detection. Springer Briefs in Molecular Science, 2015, 57-75	0.6	
145	MicroRNA Detection and Pathological Functions. Springer Briefs in Molecular Science, 2015,	0.6	3
144	An update on the clinical pharmacology of the dipeptidyl peptidase 4 inhibitor alogliptin used for the treatment of type 2 diabetes mellitus. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2015 , 42, 1225-38	3	16
143	pH-Switchable electroactive composite films of carboxylated multi-walled carbon nanotubes and Prussian blue. <i>RSC Advances</i> , 2015 , 5, 103184-103188	3.7	1
142	Ferricyanide confined into the integrative system of pyrrolic surfactant and SWCNTs: The enhanced electrochemial sensing of paracetamol. <i>Electrochimica Acta</i> , 2015 , 186, 16-23	6.7	11
141	Pyrocatechol violet-assisted in situ growth of copper nanoparticles on carbon nanotubes: The synergic effect for electrochemical sensing of hydrogen peroxide. <i>Electrochimica Acta</i> , 2015 , 155, 78-84	6.7	24
140	Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2163-6	16.4	191
139	Detection of sequence-specific DNA with a morpholino-functionalized silicon chip. <i>Analytical Methods</i> , 2015 , 7, 2406-2412	3.2	12
138	Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application. <i>Scientific Reports</i> , 2015 , 5, 7882	4.9	131
137	In-channel printing-device opening assay for micropatterning multiple cells and gene analysis. <i>Analytical Chemistry</i> , 2015 , 87, 2048-53	7.8	13
136	Carbon nitride nanosheet-supported porphyrin: a new biomimetic catalyst for highly efficient bioanalysis. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 543-52	9.5	50
135	An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 33-78	4.4	83
134	Ultrasensitive Electrochemical Biosensor Based on Noble Metal Nanomaterials. <i>Science of Advanced Materials</i> , 2015 , 7, 2084-2102	2.3	21
133	Fluorescent Film Sensors Based on Fluorescent Gold and Silver Nanoclusters. <i>Current Nanoscience</i> , 2015 , 11, 702-709	1.4	5

132	Visual detection of microRNA with lateral flow nucleic acid biosensor. <i>Biosensors and Bioelectronics</i> , 2014 , 54, 578-84	11.8	97
131	MicroRNA-561 promotes acetaminophen-induced hepatotoxicity in HepG2 cells and primary human hepatocytes through downregulation of the nuclear receptor corepressor dosage-sensitive sex-reversal adrenal hypoplasia congenital critical region on the X chromosome, gene 1 (DAX-1).	4	16
130	Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells. <i>Cancer Letters</i> , 2014 , 344, 239-59	9.9	113
129	Unusual Fe(CN)IP/II capture induced by synergic effect of electropolymeric cationic surfactant and graphene: characterization and biosensing application. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 21161-6	9.5	3
128	Chronopotentiometric synthesis of quantum dots with efficient surface-derived near-infrared electrochemiluminescence for ultrasensitive microchip-based ion-selective sensing. <i>RSC Advances</i> , 2014 , 4, 29239-29248	3.7	10
127	Combination of hematin and PEDOT via 1-pyrenebutanoic acid: a new platform for direct electrochemistry of hematin and biosensing applications. <i>RSC Advances</i> , 2014 , 4, 46980-46986	3.7	
126	Facile and material-independent fabrication of poly(luteolin) coatings and their unimpaired antibacterial activity against Staphylococcus aureus after steam sterilization treatments. <i>Polymer Chemistry</i> , 2014 , 5, 4211-4214	4.9	8
125	Stability improvement of Prussian blue in nonacidic solutions via an electrochemical post-treatment method and the shape evolution of Prussian blue from nanospheres to nanocubes. <i>Analyst, The</i> , 2014 , 139, 1127-33	5	34
124	Sensitive electrochemical detection of NADH and ethanol at low potential based on pyrocatechol violet electrodeposited on single walled carbon nanotubes-modified pencil graphite electrode. <i>Talanta</i> , 2014 , 130, 96-102	6.2	32
123	Electrochemical studies on the interfacial behaviors for the eco-friendly magnetic nanoparticles based on Fe2O3. <i>Electrochimica Acta</i> , 2014 , 138, 486-492	6.7	3
122	Ultrasensitive determination of hydrazine using a glassy carbon electrode modified with Pyrocatechol Violet electrodeposited on single walled carbon nanotubes. <i>Mikrochimica Acta</i> , 2014 , 181, 813-820	5.8	19
121	Template-assisted evaporation deposition of Au nanoparticles for fabrication of hierarchical porous Au film modified electrodes and their salt concentration-dependent capacitive current. <i>Journal of Electroanalytical Chemistry</i> , 2014 , 714-715, 116-121	4.1	1
120	Label-free and ultrasensitive microRNA detection based on novel molecular beacon binding readout and target recycling amplification. <i>Biosensors and Bioelectronics</i> , 2014 , 53, 377-83	11.8	53
119	Ultrasound-modulated bubble propulsion of chemically powered microengines. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8552-5	16.4	142
118	Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers. <i>Expert Review of Proteomics</i> , 2014 , 11, 227-36	4.2	44
117	Biosensing platform based on graphene oxide via self-assembly induced by synergic interactions. <i>Analytical Biochemistry</i> , 2014 , 460, 16-21	3.1	18
116	Zinc ion induced prefibrillar oligomerization of Alþeptides: From nanocoin to nanobelt. <i>Chemical Physics Letters</i> , 2014 , 608, 201-206	2.5	2
115	A cloud-based X73 ubiquitous mobile healthcare system: design and implementation. <i>Scientific World Journal, The</i> , 2014 , 2014, 145803	2.2	11

114	A cloud-based intelligent car parking services for smart cities 2014 ,		17
113	A cloud-based car parking middleware for IoT-based smart cities: design and implementation. <i>Sensors</i> , 2014 , 14, 22372-93	3.8	115
112	A Multimode Responsive Aptasensor for Adenosine Detection. <i>Journal of Nanomaterials</i> , 2014 , 2014, 1-7	3.2	1
111	Application of Electrodepositing Graphene Nanosheets for Latent Fingerprint Enhancement. <i>Electroanalysis</i> , 2014 , 26, 209-215	3	5
110	Electrochemical Sensors for Nitric Oxide Detection in Biological Applications. <i>Electroanalysis</i> , 2014 , 26, 449-468	3	44
109	Dual-scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation. <i>Advanced Materials</i> , 2014 , 26, 1771-5	24	277
108	A selective release system based on dual-drug-loaded mesoporous silica for nanoparticle-assisted combination therapy. <i>Chemistry - A European Journal</i> , 2014 , 20, 7796-802	4.8	17
107	Ion permeability of polydopamine films revealed using a Prussian blue-based electrochemical method. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 12781-7	3.4	24
106	Recent Advances in Nanoparticles-based Lateral Flow Biosensors. <i>American Journal of Biomedical Sciences</i> , 2014 , 41-57		23
105	Direct real-time measurement of intra-oocyte nitric oxide concentration in vivo. PLoS ONE, 2014, 9, e98	87 3.9	13
105	Direct real-time measurement of intra-oocyte nitric oxide concentration in vivo. <i>PLoS ONE</i> , 2014 , 9, e98 Electrical field manipulation of cancer cell behavior monitored by whole cell biosensing device. <i>Biomedical Microdevices</i> , 2013 , 15, 657-663	3·7	13
	Electrical field manipulation of cancer cell behavior monitored by whole cell biosensing device.		
104	Electrical field manipulation of cancer cell behavior monitored by whole cell biosensing device. Biomedical Microdevices, 2013, 15, 657-663 Flexible metallization of electrospun nanofibers: Dramatically enhanced solid-state electrochemistry and electrochemiluminescence of the immobilized	3.7	
104	Electrical field manipulation of cancer cell behavior monitored by whole cell biosensing device. <i>Biomedical Microdevices</i> , 2013 , 15, 657-663 Flexible metallization of electrospun nanofibers: Dramatically enhanced solid-state electrochemistry and electrochemiluminescence of the immobilized tris(2,2?-bipyridyl)ruthenium(II). <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 159-165 Space-confined fabrication of silver nanodendrites and their enhanced SERS activity. <i>Nanoscale</i> ,	3.7	15
104	Electrical field manipulation of cancer cell behavior monitored by whole cell biosensing device. <i>Biomedical Microdevices</i> , 2013 , 15, 657-663 Flexible metallization of electrospun nanofibers: Dramatically enhanced solid-state electrochemistry and electrochemiluminescence of the immobilized tris(2,2?-bipyridyl)ruthenium(II). <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 159-165 Space-confined fabrication of silver nanodendrites and their enhanced SERS activity. <i>Nanoscale</i> , 2013 , 5, 4284-90 An ultrasensitive electrochemical method for detection of Ag(+) based on cyclic amplification of	3.7 8.5 7.7	15 6 49
104 103 102	Electrical field manipulation of cancer cell behavior monitored by whole cell biosensing device. <i>Biomedical Microdevices</i> , 2013 , 15, 657-663 Flexible metallization of electrospun nanofibers: Dramatically enhanced solid-state electrochemistry and electrochemiluminescence of the immobilized tris(2,2?-bipyridyl)ruthenium(II). <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 159-165 Space-confined fabrication of silver nanodendrites and their enhanced SERS activity. <i>Nanoscale</i> , 2013 , 5, 4284-90 An ultrasensitive electrochemical method for detection of Ag(+) based on cyclic amplification of exonuclease III activity on cytosine-Ag(+)-cytosine. <i>Analyst</i> , <i>The</i> , 2013 , 138, 6900-6 An ion-induced low-oil-adhesion organic/inorganic hybrid film for stable superoleophobicity in	3.7 8.5 7.7	15 6 49 35
104 103 102 101	Electrical field manipulation of cancer cell behavior monitored by whole cell biosensing device. <i>Biomedical Microdevices</i> , 2013 , 15, 657-663 Flexible metallization of electrospun nanofibers: Dramatically enhanced solid-state electrochemistry and electrochemiluminescence of the immobilized tris(2,2?-bipyridyl)ruthenium(II). <i>Sensors and Actuators B: Chemical</i> , 2013 , 181, 159-165 Space-confined fabrication of silver nanodendrites and their enhanced SERS activity. <i>Nanoscale</i> , 2013 , 5, 4284-90 An ultrasensitive electrochemical method for detection of Ag(+) based on cyclic amplification of exonuclease III activity on cytosine-Ag(+)-cytosine. <i>Analyst, The</i> , 2013 , 138, 6900-6 An ion-induced low-oil-adhesion organic/inorganic hybrid film for stable superoleophobicity in seawater. <i>Advanced Materials</i> , 2013 , 25, 606-11	3.7 8.5 7.7 5	15 6 49 35 107

(2012-2013)

96	Immobilization of bovine serum albumin-protected gold nanoclusters by using polyelectrolytes of opposite charges for the development of the reusable fluorescent Cu2+-sensor. <i>Biosensors and Bioelectronics</i> , 2013 , 44, 16-20	11.8	40
95	Visualizing latent fingerprints by electrodeposition of metal nanoparticles. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 693, 122-126	4.1	31
94	Reversible gold nanorod assembly triggered by pH-responsive DNA nanomachine. <i>Applied Physics Letters</i> , 2013 , 102, 123101	3.4	11
93	Synthesis and biological evaluation of novel folic acid receptor-targeted, Ecyclodextrin-based drug complexes for cancer treatment. <i>PLoS ONE</i> , 2013 , 8, e62289	3.7	41
92	MicroRNA: function, detection, and bioanalysis. <i>Chemical Reviews</i> , 2013 , 113, 6207-33	68.1	78o
91	Nacre-inspired design of mechanical stable coating with underwater superoleophobicity. <i>ACS Nano</i> , 2013 , 7, 5077-83	16.7	153
90	Bioinspired polydopamine as the scaffold for the active AuNPs anchoring and the chemical simultaneously reduced graphene oxide: characterization and the enhanced biosensing application. <i>Biosensors and Bioelectronics</i> , 2013 , 49, 466-71	11.8	42
89	In situ growth cupric oxide nanoparticles on carbon nanofibers for sensitive nonenzymatic sensing of glucose. <i>Electrochimica Acta</i> , 2013 , 105, 433-438	6.7	35
88	Highly sensitive and selective chemiluminescent imaging for DNA detection by ligation-mediated rolling circle amplified synthesis of DNAzyme. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 348-53	11.8	50
87	Development of a Sencha-Touch mTest Mobile App for a mLearning System 2013 ,		1
86	Self-assembly of thiophene derivatives on highly oriented pyrolytic graphite: hydrogen bond effect. Journal of Nanoscience and Nanotechnology, 2013 , 13, 1226-31	1.3	1
85	Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro. <i>PLoS ONE</i> , 2013 , 8, e60034	3.7	116
84	Single-walled carbon nanotube ensembles modified gold ultramicroelectrodes prepared by self-assembly deposition method with 1-(1-pyrenyl)-1-methanethiol monolayer as an adhesion layer. <i>Electrochemistry Communications</i> , 2012 , 20, 163-166	5.1	2
83	Stable end-to-end assembly of gold nanorods directed by cyclic disulfide-modified DNA. <i>Applied Physics Letters</i> , 2012 , 101, 213701	3.4	6
82	Aligned carbon nanotube modified carbon fibre coated with gold nanoparticles embedded in a polymer film: Voltammetric microprobe for enzymeless glucose sensing. <i>Electrochemistry Communications</i> , 2012 , 25, 94-97	5.1	15
81	Multiple Foreign Gene Delivery Can Induce Antibody Production in Mice. <i>Analytical Letters</i> , 2012 , 45, 2066-2074	2.2	
80	A personalized middleware for ubiquitous mHealth services 2012,		1
79	A flexible DNA modification approach towards construction of gold nanoparticle assemblies. <i>Chemical Communications</i> , 2012 , 48, 3963-5	5.8	16

78	SECM imaging of latent fingerprints developed by deposition of Al-doped ZnO thin film. <i>Electrochimica Acta</i> , 2012 , 78, 412-416	6.7	19
77	Trace and label-free microRNA detection using oligonucleotide encapsulated silver nanoclusters as probes. <i>Analytical Chemistry</i> , 2012 , 84, 8670-4	7.8	160
76	Detection of nitric oxide in macrophage cells for the assessment of the cytotoxicity of gold nanoparticles. <i>Talanta</i> , 2012 , 101, 11-6	6.2	16
75	Highly efficient remote controlled release system based on light-driven DNA nanomachine functionalized mesoporous silica. <i>Nanoscale</i> , 2012 , 4, 4473-6	7.7	41
74	DNA-based intelligent logic controlled release systems. <i>Chemical Communications</i> , 2012 , 48, 8410-2	5.8	46
73	Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. <i>Analytical Chemistry</i> , 2012 , 84, 4587-93	7.8	228
72	Label-Free Electrochemical Imaging of Latent Fingerprints on Metal Surfaces. <i>Electroanalysis</i> , 2012 , 24, 1027-1032	3	25
71	Fractal gold modified electrode for ultrasensitive thrombin detection. <i>Nanoscale</i> , 2012 , 4, 3786-90	7.7	32
70	Nanobiosensing for Clinical Diagnosis 2011 , 535-567		3
69	Biosensing with Nanoparticles as Electrogenerated Chemiluminsecence Emitters 2011 , 241-264		
69 68	Biosensing with Nanoparticles as Electrogenerated Chemiluminsecence Emitters 2011 , 241-264 NanoBiosensing 2011 ,		26
Í			26
68	NanoBiosensing 2011 ,	7-7	26
68 6 ₇	NanoBiosensing 2011, Cytosensing and Cell Surface Carbohydrate Assay by Assembly of Nanoparticles 2011, 485-534 Interfacial self-assembly of amino acids and peptides: scanning tunneling microscopy investigation.	7-7	
68 67 66	NanoBiosensing 2011, Cytosensing and Cell Surface Carbohydrate Assay by Assembly of Nanoparticles 2011, 485-534 Interfacial self-assembly of amino acids and peptides: scanning tunneling microscopy investigation. Nanoscale, 2011, 3, 4901-15	7.7	20
68 67 66 65	NanoBiosensing 2011, Cytosensing and Cell Surface Carbohydrate Assay by Assembly of Nanoparticles 2011, 485-534 Interfacial self-assembly of amino acids and peptides: scanning tunneling microscopy investigation. Nanoscale, 2011, 3, 4901-15 Semiconductor Quantum Dots for Electrochemical Biosensors 2011, 199-219 Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow		20
68 67 66 65 64	NanoBiosensing 2011, Cytosensing and Cell Surface Carbohydrate Assay by Assembly of Nanoparticles 2011, 485-534 Interfacial self-assembly of amino acids and peptides: scanning tunneling microscopy investigation. Nanoscale, 2011, 3, 4901-15 Semiconductor Quantum Dots for Electrochemical Biosensors 2011, 199-219 Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor. Biosensors and Bioelectronics, 2011, 26, 2018-24 Ultrasensitive and selective DNA detection by hydroxylamine assisted gold nanoparticle	11.8	20 1 164

60	Nanostructured Mimic Enzymes for Biocatalysis and Biosensing 2011 , 85-109		2
59	Serum proteomic profile analysis for endometrial carcinoma detection with MALDI-TOF MS. <i>Archives of Medical Science</i> , 2010 , 6, 245-52	2.9	8
58	Nanomedicine: magnetic nanoparticles and their biomedical applications. <i>Current Medicinal Chemistry</i> , 2010 , 17, 3120-41	4.3	130
57	Gold nanoparticle enrichment method for identifying S-nitrosylation and S-glutathionylation sites in proteins. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11392-4	16.4	50
56	A Comparison of Membrane Inlet Mass Spectrometry and Nitric Oxide (NO) Electrode Techniques to Detect NO in Aqueous Solution. <i>Electroanalysis</i> , 2010 , 22, 445-448	3	5
55	Metallo Protoporphyrin Functionalized Microelectrodes for Electrocatalytic Sensing of Nitric Oxide. <i>American Journal of Biomedical Sciences</i> , 2009 , 1, 274-282		17
54	Carbon nanofiber doped polypyrrole nanoscaffold for electrochemical monitoring of cell adhesion and proliferation. <i>Electrochemistry Communications</i> , 2009 , 11, 760-763	5.1	25
53	Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of l-cysteine. <i>Talanta</i> , 2009 , 77, 1654-9	6.2	65
52	Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum. <i>Journal of the American Chemical Society</i> , 2009 , 131, 40-1	16.4	177
51	Nitric oxide (NO) electrochemical sensors 2008 , 1-29		6
50	Nitric oxide (NO) electrochemical sensors 2008 , 1-29 Nitric oxide selective electrodes. <i>Methods in Enzymology</i> , 2008 , 436, 63-95	1.7	43
		1.7	
50	Nitric oxide selective electrodes. <i>Methods in Enzymology</i> , 2008 , 436, 63-95 Electrochemical sensors for the determination of hydrogen sulfide production in biological samples	4.3	
50	Nitric oxide selective electrodes. <i>Methods in Enzymology</i> , 2008 , 436, 63-95 Electrochemical sensors for the determination of hydrogen sulfide production in biological samples 2008 , 213-235		43
50 49 48	Nitric oxide selective electrodes. <i>Methods in Enzymology</i> , 2008 , 436, 63-95 Electrochemical sensors for the determination of hydrogen sulfide production in biological samples 2008 , 213-235 Trends in cell-based electrochemical biosensors. <i>Current Medicinal Chemistry</i> , 2008 , 15, 3160-70 Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive	4.3	43 4 72
50 49 48 47	Nitric oxide selective electrodes. <i>Methods in Enzymology</i> , 2008 , 436, 63-95 Electrochemical sensors for the determination of hydrogen sulfide production in biological samples 2008 , 213-235 Trends in cell-based electrochemical biosensors. <i>Current Medicinal Chemistry</i> , 2008 , 15, 3160-70 Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive ethanol biosensing. <i>Biosensors and Bioelectronics</i> , 2008 , 24, 644-9 Highly sensitive flow injection detection of hydrogen peroxide with high throughput using a carbon	4.3	43 4 72 30
50 49 48 47 46	Nitric oxide selective electrodes. <i>Methods in Enzymology</i> , 2008 , 436, 63-95 Electrochemical sensors for the determination of hydrogen sulfide production in biological samples 2008 , 213-235 Trends in cell-based electrochemical biosensors. <i>Current Medicinal Chemistry</i> , 2008 , 15, 3160-70 Biofunctional nanocomposite of carbon nanofiber with water-soluble porphyrin for highly sensitive ethanol biosensing. <i>Biosensors and Bioelectronics</i> , 2008 , 24, 644-9 Highly sensitive flow injection detection of hydrogen peroxide with high throughput using a carbon nanofiber-modified electrode. <i>Analyst</i> , <i>The</i> , 2007 , 132, 406-8 Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low	4·3 11.8	43 4 72 30 29

42	Amperometric glucose sensor based on catalytic reduction of dissolved oxygen at soluble carbon nanofiber. <i>Biosensors and Bioelectronics</i> , 2007 , 23, 479-84	11.8	96
41	Implantable Electrochemical Sensors for Biomedical and Clinical Applications: Progress, Problems, and Future Possibilities <i>Current Medicinal Chemistry</i> , 2007 , 14, 937-951	4.3	59
40	Amperometric sensor for ethanol based on one-step electropolymerization of thionine-carbon nanofiber nanocomposite containing alcohol oxidase. <i>Talanta</i> , 2007 , 74, 387-92	6.2	46
39	Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. <i>Analytical Chemistry</i> , 2007 , 79, 4442-7	7.8	174
38	Synthesis and characterization of CoFe2O4 octahedrons via an EDTA-assisted route. <i>Journal of Magnetism and Magnetic Materials</i> , 2006 , 305, 68-70	2.8	27
37	Electrochemical immunoassay of membrane P-glycoprotein by immobilization of cells on gold nanoparticles modified on a methoxysilyl-terminated butyrylchitosan matrix. <i>Biochemistry</i> , 2005 , 44, 11539-45	3.2	74
36	Impedance labelless detection-based polypyrrole DNA biosensor. <i>Frontiers in Bioscience - Landmark</i> , 2005 , 10, 180-6	2.8	62
35	Nickel hexacyanoferrate modified screen-printed carbon electrode for sensitive detection of ascorbic acid and hydrogen peroxide. <i>Frontiers in Bioscience - Landmark</i> , 2005 , 10, 483-91	2.8	23
34	Real time and in vivo monitoring of nitric oxide by electrochemical sensorsfrom dream to reality. <i>Frontiers in Bioscience - Landmark</i> , 2004 , 9, 3434-46	2.8	76
33	Construction and Characterization of a New Flexible and Nonbreakable Nitric Oxide Microsensor. <i>Electroanalysis</i> , 2004 , 16, 640-643	3	7
32	A New Nitric Oxide Gas Sensor Based on Reticulated Vitreous Carbon/Nafion and Its Applications. <i>Electroanalysis</i> , 2004 , 16, 1723-1729	3	7
31	Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. <i>Sensors</i> , 2003 , 3, 276-284	3.8	353
30	A Novel Microchip Nitric Oxide Sensor with sub-nM Detection Limit. <i>Electroanalysis</i> , 2002 , 14, 697	3	38
29	Nanometer size electrode for nitric oxide and S-nitrosothiols measurement. <i>Electrochemistry Communications</i> , 2002 , 4, 11-16	5.1	39
28	Solid-state pH nanoelectrode based on polyaniline thin film electrodeposited onto ion-beam etched carbon fiber. <i>Analytica Chimica Acta</i> , 2002 , 452, 1-10	6.6	113
27	Design of pH microelectrodes based on ETHT 2418 and their application for measurement of pH profile in instant noodles. <i>Analytica Chimica Acta</i> , 2001 , 445, 57-65	6.6	13
26	Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. <i>Analytical Chemistry</i> , 2001 , 73, 844-7	7.8	73
25	Real-time profiling of kidney tubular fluid nitric oxide concentrations in vivo. <i>American Journal of Physiology - Renal Physiology</i> , 2001 , 281, F189-94	4.3	34

24	Cobalt and Copper Hexacyanoferrate Modified Carbon Fiber Microelectrode as an All-Solid Potentiometric Microsensor for Hydrazine. <i>Electroanalysis</i> , 2000 , 12, 48-54	3	156
23	Novel Calibration Method for Nitric Oxide Microsensors by Stoichiometrical Generation of Nitric Oxide from SNAP. <i>Electroanalysis</i> , 2000 , 12, 425-428	3	46
22	An Integrated Nitric Oxide Sensor Based on Carbon Fiber Coated with Selective Membranes. <i>Electroanalysis</i> , 2000 , 12, 1113-1117	3	50
21	Comparison of Glucose Enzyme Electrodes Based on Dispersed Rhodium Particles and Cupric Hexacyanoferrate Within Carbon Paste Transducers. <i>Electroanalysis</i> , 2000 , 12, 1277-1281	3	10
20	Cobalt and Copper Hexacyanoferrate Modified Carbon Fiber Microelectrode as an All-Solid Potentiometric Microsensor for Hydrazine 2000 , 12, 48		1
19	Controlled release of DNA from carbon-paste microelectrodes. <i>Electrochemistry Communications</i> , 1999 , 1, 197-202	5.1	33
18	Cathophoresis paint insulated carbon fibre ultramicro disc electrode and its application to in vivo amperometric monitoring of quantal secretion from single rat melanotrophs. <i>Analytica Chimica Acta</i> , 1999 , 378, 135-143	6.6	30
17	Glucose microsensors based on carbon paste enzyme electrodes modified with cupric hexacyanoferrate. <i>Analytica Chimica Acta</i> , 1999 , 395, 11-16	6.6	66
16	Glucose Nanosensor Based on Prussian-Blue Modified Carbon-Fiber Cone Nanoelectrode and an Integrated Reference Electrode. <i>Electroanalysis</i> , 1999 , 11, 945-949	3	82
15	Electrochemically Induced Release of DNA from Gold Ultramicroelectrodes. <i>Langmuir</i> , 1999 , 15, 6541-6	545	75
14	Screen Printed Cupric-Hexacyanoferrate Modified Carbon Enzyme Electrode for Single-Use Glucose Measurements. <i>Analytical Letters</i> , 1999 , 32, 1739-1749	2.2	32
13	Development of Magnesium-Ion-Selective Microelectrodes Based on a New Neutral Carrier ETHT 5504. <i>Electroanalysis</i> , 1998 , 10, 1174-1181	3	15
12	Poly(tetrafluoroethylene) Film Housing of Carbon Fibers Using Capillary-Pull Technology for One-Stage Fabrication of Carbon Disk Ultramicroelectrodes and Their Characterization. <i>Analytical Chemistry</i> , 1998 , 70, 1646-1651	7.8	16
11	Fabrication, characterization, and potential application of carbon fiber cone nanometer-size electrodes. <i>Analytical Chemistry</i> , 1996 , 68, 3338-43	7.8	54
10	Over-oxidized polypyrrole-modified carbon fibre ultramicroelectrode with an integrated silver/silver chloride reference electrode for the selective voltammetric measurement of dopamine in extremely small sample volumes. <i>Analyst, The</i> , 1996 , 121, 1817-1822	5	38
9	Properties and applications of carbon fiber dual-cylinder microelectrodes. <i>Electroanalysis</i> , 1996 , 8, 947-	9 § 1	6
8	Preparation and amperometric response of carbon and platinum dual-cylinder microelectrodes. <i>Electrochimica Acta</i> , 1995 , 40, 455-465	6.7	9
7	Dual-cylinder microelectrodes Part 2.Bteady-state generator and collector electrode currents. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 605-608		8

6	Voltammetry of dihydroxyphenylalanine (l-DOPA) using a Nafion-coated carbon fibre ultramicroelectrode array. <i>Analytica Chimica Acta</i> , 1992 , 265, 27-34	6.6	15
5	A thin carbon nanofiber/branched carbon nanofiber nanocomposite for high-performance supercapacitors. <i>New Journal of Chemistry</i> ,	3.6	1
4	Recent Progress on Smart Fiber and Textile Based Wearable Strain Sensors: Materials, Fabrications and Applications. <i>Advanced Fiber Materials</i> ,1	10.9	9
3	Mini-pillar Based Multi-channel Electrochemical Platform for Studying the Multifactor Silver Electrodeposition. <i>Electroanalysis</i> ,	3	3
2	· · · · · · · · · · · · · · · · · · ·	3.9	2