Pauline Ezanno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2411139/publications.pdf

Version: 2024-02-01

331259 377514 1,437 64 21 34 citations h-index g-index papers 71 71 71 1558 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A Rainfall- and Temperature-Driven Abundance Model for Aedes albopictus Populations. International Journal of Environmental Research and Public Health, 2013, 10, 1698-1719.	1.2	147
2	A climate-driven abundance model to assess mosquito control strategies. Ecological Modelling, 2012, 227, 7-17.	1.2	81
3	Association of growth, feeding practices and exercise conditions with the prevalence of Developmental Orthopaedic Disease in limbs of French foals at weaning. Preventive Veterinary Medicine, 2009, 89, 167-177.	0.7	68
4	Characteristics of the spatio-temporal network of cattle movements in France over a 5-year period. Preventive Veterinary Medicine, 2014, 117, 79-94.	0.7	56
5	Within-herd contact structure and transmission of Mycobacterium avium subspecies paratuberculosis in a persistently infected dairy cattle herd. Preventive Veterinary Medicine, 2011, 100, 116-125.	0.7	55
6	Invited review: Modeling within-herd transmission of Mycobacterium avium subspecies paratuberculosis in dairy cattle: A review. Journal of Dairy Science, 2010, 93, 4455-4470.	1.4	50
7	Sensitivity analysis to identify key-parameters in modelling the spread of bovine viral diarrhoea virus in a dairy herd. Preventive Veterinary Medicine, 2007, 80, 49-64.	0.7	48
8	A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: Movement and epidemic duration. Journal of Theoretical Biology, 2008, 254, 331-338.	0.8	46
9	Impact of the Infection Period Distribution on the Epidemic Spread in a Metapopulation Model. PLoS ONE, 2010, 5, e9371.	1.1	43
10	Influence of herd structure and type of virus introduction on the spread of bovine viral diarrhoea virus (BVDV) on the spread of bovine viral diarrhoea virus (BVDV) within a dairy herd. Veterinary Research, 2008, 39, 39.	1.1	43
11	Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes: I-selection goals and criteria. Animal, 2016, 10, 1749-1759.	1.3	42
12	Modelling <i>Salmonella </i> spread within a farrow-to-finish pig herd. Veterinary Research, 2008, 39, 49.	1.1	41
13	Modelling of paratuberculosis spread between dairy cattle farms at a regional scale. Veterinary Research, 2015, 46, 111.	1.1	36
14	Predicting fadeout versus persistence of paratuberculosis in a dairy cattle herd for management and control purposes: a modelling study. Veterinary Research, 2011, 42, 36.	1.1	35
15	Research perspectives on animal health in the era of artificial intelligence. Veterinary Research, 2021, 52, 40.	1.1	34
16	Modelling the spread of Bovine Viral Diarrhoea Virus (BVDV) in a managed metapopulation of cattle herds. Veterinary Microbiology, 2010, 142, 119-128.	0.8	31
17	Modelling the spread of bovine viral diarrhea virus (BVDV) in a beef cattle herd and its impact on herd productivity. Veterinary Research, 2015, 46, 12.	1.1	31
18	Factors affecting the body condition score of N'Dama cows under extensive range management in Southern Senegal. Animal Research, 2003, 52, 37-48.	0.6	30

#	Article	IF	CITATIONS
19	Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies. Animal, 2016, 10, 1760-1769.	1.3	30
20	Spread of Coxiella burnetii between dairy cattle herds in an enzootic region: modelling contributions of airborne transmission and trade. Veterinary Research, 2016, 47, 48.	1.1	27
21	How mechanistic modelling supports decision making for the control of enzootic infectious diseases. Epidemics, 2020, 32, 100398.	1.5	25
22	Seasonal spread and control of Bluetongue in cattle. Journal of Theoretical Biology, 2011, 291, 1-9.	0.8	23
23	Seasonal and spatial heterogeneities in host and vector abundances impact the spatiotemporal spread of bluetongue. Veterinary Research, 2013, 44, 44.	1.1	21
24	A Stochastic Model to Study Rift Valley Fever Persistence with Different Seasonal Patterns of Vector Abundance: New Insights on the Endemicity in the Tropical Island of Mayotte. PLoS ONE, 2015, 10, e0130838.	1.1	21
25	Controlling bovine paratuberculosis at a regional scale: Towards a decision modelling tool. Journal of Theoretical Biology, 2017, 435, 157-183.	0.8	21
26	Sensitivity analysis in periodic matrix models: A postscript to Caswell and Trevisan. Mathematical and Computer Modelling, 2003, 37, 945-948.	2.0	19
27	Market analyses of livestock trade networks to inform the prevention of joint economic and epidemiological risks. Journal of the Royal Society Interface, 2016, 13, 20151099.	1.5	19
28	Between-herd movements of cattle as a tool for evaluating the risk of introducing infected animals. Animal Research, 2006, 55, 189-208.	0.6	18
29	Role of the repartition of wetland breeding sites on the spatial distribution of Anopheles and Culex, human disease vectors in Southern France. Parasites and Vectors, 2011, 4, 65.	1.0	18
30	A generic weather-driven model to predict mosquito population dynamics applied to species of Anopheles, Culex and Aedes genera of southern France. Preventive Veterinary Medicine, 2015, 120, 39-50.	0.7	18
31	Evaluation of testing strategies to identify infected animals at a single round of testing within dairy herds known to be infected with Mycobacterium avium ssp. paratuberculosis. Journal of Dairy Science, 2015, 98, 5194-5210.	1.4	18
32	Control measures to prevent the increase of paratuberculosis prevalence in dairy cattle herds: an individual-based modelling approach. Veterinary Research, 2018, 49, 60.	1.1	18
33	EMULSION: Transparent and flexible multiscale stochastic models in human, animal and plant epidemiology. PLoS Computational Biology, 2019, 15, e1007342.	1.5	18
34	Neighbourhood contacts and trade movements drive the regional spread of bovine viral diarrhoea virus (BVDV). Veterinary Research, 2019, 50, 30.	1.1	18
35	Modeling the Transmission of Vibrio aestuarianus in Pacific Oysters Using Experimental Infection Data. Frontiers in Veterinary Science, 2019, 6, 142.	0.9	16
36	Dynamics of a tropical cattle herd in a variable environment: A modelling approach in order to identify the target period and animals on which concentrating management efforts to improve productivity. Ecological Modelling, 2005, 188, 470-482.	1.2	14

#	Article	IF	CITATIONS
37	Relationships between N'Dama cow body condition score and production performance under an extensive range management system in Southern Senegal: calf weight gain, milk production, probability of pregnancy, and juvenile mortality. Livestock Science, 2005, 92, 291-306.	1.2	12
38	Seasonal and landscape differencesin the foraging behaviour of the Rufous Treecreeper Climacteris rufa. Pacific Conservation Biology, 2001, 7, 9.	0.5	12
39	Demographic stochasticity drives epidemiological patterns in wildlife with implications for diseases and population management. Scientific Reports, 2018, 8, 16846.	1.6	11
40	A modeling study on the sustainability of a certification-and-monitoring program for paratuberculosis in cattle. Veterinary Research, 2005, 36, 811-826.	1.1	10
41	Rewiring cattle trade movements helps to control bovine paratuberculosis at a regional scale. Preventive Veterinary Medicine, 2021, 198, 105529.	0.7	10
42	How Much Can Diptera-Borne Viruses Persist over Unfavourable Seasons?. PLoS ONE, 2013, 8, e74213.	1.1	9
43	Within-herd biosecurity and Salmonella seroprevalence in slaughter pigs: A simulation study. Journal of Animal Science, 2011, 89, 2210-2219.	0.2	7
44	A novel epidemiological model to better understand and predict the observed seasonal spread of Pestivirus in Pyrenean chamois populations. Veterinary Research, 2015, 46, 86.	1.1	7
45	Enhancing Sustainability of Complex Epidemiological Models through a Generic Multilevel Agent-based Approach. , 2017, , .		7
46	A metapopulation model for the spread and persistence of contagious bovine pleuropneumonia (CBPP) in African sedentary mixed crop–livestock systems. Journal of Theoretical Biology, 2009, 256, 493-503.	0.8	6
47	A Multi-Level Multi-Agent Simulation Framework in Animal Epidemiology. Lecture Notes in Computer Science, 2017, , 209-221.	1.0	6
48	Paramètres démographiques des bovins N'Dama en milieu pastoral extensif dans le sud du Sénégal. Revue D'Elevage Et De Medecine Veterinaire Des Pays Tropicaux, 2002, 55, 211.	0.2	6
49	A modelling framework based on MDP to coordinate farmers' disease control decisions at a regional scale. PLoS ONE, 2018, 13, e0197612.	1.1	5
50	Between-group pathogen transmission: From processes to modeling. Ecological Modelling, 2018, 383, 138-149.	1.2	5
51	It's risky to wander in September: Modelling the epidemic potential of Rift Valley fever in a Sahelian setting. Epidemics, 2020, 33, 100409.	1.5	5
52	Accounting for farmers' control decisions in a model of pathogen spread through animal trade. Scientific Reports, 2021, 11, 9581.	1.6	5
53	Modelling the Dynamics of Host-Parasite Interactions: Basic Principles. , 2012, , 79-101.		4
54	A serviceâ€based framework for building and executing epidemic simulation applications in the cloud. Concurrency Computation Practice and Experience, 2020, 32, e5554.	1.4	4

#	Article	IF	CITATIONS
55	Modelling transmission of Mycobacterium avium subspecies paratuberculosis between Irish dairy cattle herds. Veterinary Research, 2022, 53, .	1.1	4
56	Using singular perturbations to reduce an epidemiological model: Application to bovine viral diarrhoea virus within-herd spread. Journal of Theoretical Biology, 2009, 258, 426-436.	0.8	3
57	Resilience of a beef cow-calf farming system to variations in demographic parameters1. Journal of Animal Science, 2013, 91, 413-424.	0.2	3
58	DiFFuSE, a Distributed Framework for Cloud-Based Epidemic Simulations: A Case Study in Modelling the Spread of Bovine Viral Diarrhea Virus. , 2017 , , .		2
59	Which phenotypic traits of resistance should be improved in cattle to control paratuberculosis dynamics in a dairy herd: a modelling approach. Veterinary Research, 2017, 48, 62.	1.1	2
60	To Vaccinate or Not: Impact of Bovine Viral Diarrhoea in French Cow-Calf Herds. Vaccines, 2021, 9, 1137.	2.1	2
61	Modelling as a tool for the teaching of livestock dynamics. Animal Research, 2004, 53, 439-450.	0.6	2
62	Dispersal in heterogeneous environments drives population dynamics and control of tsetse flies. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202810.	1.2	1
63	Dynamic resource allocation for controlling pathogen spread on a large metapopulation network. Journal of the Royal Society Interface, 2022, 19, 20210744.	1.5	1
64	Intelligence artificielle et santé animale. INRA Productions Animales, 2020, 33, 95-108.	0.3	0