
Jens Wuerfel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2411099/publications.pdf Version: 2024-02-01

IENS WHEDEEL

#	Article	IF	CITATIONS
1	MRI characteristics of neuromyelitis optica spectrum disorder. Neurology, 2015, 84, 1165-1173.	1.1	523
2	The impact of aging and gender on brain viscoelasticity. NeuroImage, 2009, 46, 652-657.	4.2	345
3	Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain, 2018, 141, 2382-2391.	7.6	345
4	The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nature Reviews Neurology, 2016, 12, 714-722.	10.1	274
5	MR-elastography reveals degradation of tissue integrity in multiple sclerosis. NeuroImage, 2010, 49, 2520-2525.	4.2	262
6	Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurology, The, 2022, 21, 246-257.	10.2	210
7	Perivascular spaces–MRI marker of inflammatory activity in the brain?. Brain, 2008, 131, 2332-2340.	7.6	200
8	Brain Viscoelasticity Alteration in Chronic-Progressive Multiple Sclerosis. PLoS ONE, 2012, 7, e29888.	2.5	195
9	Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain, 2004, 127, 111-119.	7.6	194
10	Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6650-6655.	7.1	193
11	Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology, 2012, 79, 708-714.	1.1	190
12	Functional and structural brain changes in anti–Nâ€methylâ€Dâ€aspartate receptor encephalitis. Annals of Neurology, 2013, 74, 284-296.	5.3	167
13	MACNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nature Reviews Neurology, 2020, 16, 171-182.	10.1	150
14	Relationships of Overt and Silent Brain Lesions With Cognitive Function in Patients With Atrial Fibrillation. Journal of the American College of Cardiology, 2019, 73, 989-999.	2.8	148
15	Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 1592-1599.	3.0	132
16	High-Resolution Mechanical Imaging of Glioblastoma by Multifrequency Magnetic Resonance Elastography. PLoS ONE, 2014, 9, e110588.	2.5	120
17	Evaluation of the Central Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis. JAMA Neurology, 2019, 76, 1446.	9.0	119
18	Oral High-Dose Atorvastatin Treatment in Relapsing-Remitting Multiple Sclerosis. PLoS ONE, 2008, 3, e1928.	2.5	110

#	Article	IF	CITATIONS
19	Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nature Reviews Neurology, 2015, 11, 676-686.	10.1	109
20	Frequency of blood CX3CR1â€positive natural killer cells correlates with disease activity in multiple sclerosis patients. FASEB Journal, 2005, 19, 1902-1904.	0.5	85
21	Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning – an ultrahigh-field MR pilot study. European Radiology, 2015, 25, 122-131.	4.5	84
22	Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain, 2021, 144, 1296-1311.	7.6	81
23	Smouldering multiple sclerosis: the â€~real MS'. Therapeutic Advances in Neurological Disorders, 2022, 15, 175628642110667.	3.5	72
24	Multiple Sclerosis Lesions and Irreversible Brain Tissue Damage. Archives of Neurology, 2012, 69, 739-45.	4.5	68
25	Spinal cord volume loss. Neurology, 2018, 91, e349-e358.	1.1	66
26	Teriflunomide slows BVL in relapsing MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e390.	6.0	65
27	Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients. Multiple Sclerosis Journal, 2017, 23, 963-972.	3.0	65
28	Iron and Non-Iron-Related Characteristics of Multiple Sclerosis and Neuromyelitis Optica Lesions at 7T MRI. American Journal of Neuroradiology, 2016, 37, 1223-1230.	2.4	61
29	Encephalopathy, visual disturbance and hearing loss—recognizing the symptoms of Susac syndrome. Nature Reviews Neurology, 2009, 5, 683-688.	10.1	59
30	Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e343.	6.0	55
31	Thalamus pathology in multiple sclerosis: from biology to clinical application. Cellular and Molecular Life Sciences, 2015, 72, 1127-1147.	5.4	54
32	A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis. NeuroImage, 2021, 225, 117471.	4.2	54
33	Cerebral blood perfusion changes in multiple sclerosis. Journal of the Neurological Sciences, 2007, 259, 16-20.	0.6	52
34	Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study. Multiple Sclerosis Journal, 2013, 19, 316-325.	3.0	52
35	Imaging of Iron. International Review of Neurobiology, 2013, 110, 195-239.	2.0	50
36	Silent brain infarcts impact on cognitive function in atrial fibrillation. European Heart Journal, 2022, 43, 2127-2135.	2.2	50

#	Article	IF	CITATIONS
37	CNSâ€irrelevant Tâ€cells enter the brain, cause blood–brain barrier disruption but no glial pathology. European Journal of Neuroscience, 2007, 26, 1387-1398.	2.6	48
38	Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study. PLoS ONE, 2012, 7, e37631.	2.5	48
39	The role of the cerebellum in multiple sclerosis—150 years after Charcot. Neuroscience and Biobehavioral Reviews, 2018, 89, 85-98.	6.1	48
40	Design of the Swiss Atrial Fibrillation Cohort Study (Swiss-AF): structural brain damage and cognitive decline among patients with atrial fibrillation. Swiss Medical Weekly, 2017, 147, w14467.	1.6	46
41	Mouse model mimics multiple sclerosis in the clinico-radiological paradox. European Journal of Neuroscience, 2007, 26, 190-198.	2.6	45
42	Can we overcome the †clinico-radiological paradox' in multiple sclerosis?. Journal of Neurology, 2012, 259, 2151-2160.	3.6	45
43	Preferential spinal cord volume loss in primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 947-957.	3.0	44
44	Serum neurofilament light chain is a useful biomarker in pediatric multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	43
45	Beyond blood brain barrier breakdown – in vivodetection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI. Journal of Neuroinflammation, 2009, 6, 20.	7.2	41
46	Identical lesion morphology in primary progressive and relapsing–remitting MS –an ultrahigh field MRI study. Multiple Sclerosis Journal, 2014, 20, 1866-1871.	3.0	40
47	BRAVE-NET: Fully Automated Arterial Brain Vessel Segmentation in Patients With Cerebrovascular Disease. Frontiers in Artificial Intelligence, 2020, 3, 552258.	3.4	40
48	Rapid Parametric Mapping of the Longitudinal Relaxation Time T1 Using Two-Dimensional Variable Flip Angle Magnetic Resonance Imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla. PLoS ONE, 2014, 9, e91318.	2.5	38
49	MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e259.	6.0	38
50	Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: A combined optical coherence tomography and diffusion tensor imaging study. Multiple Sclerosis Journal, 2014, 20, 1904-1907.	3.0	36
51	Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA Journal, 2015, 6, 16.	6.1	36
52	Power estimation for non-standardized multisite studies. NeuroImage, 2016, 134, 281-294.	4.2	36
53	Longitudinal study of multiple sclerosis lesions using ultra-high field (7T) multiparametric MR imaging. PLoS ONE, 2018, 13, e0202918.	2.5	36
54	Volume loss in the deep gray matter and thalamic subnuclei: a longitudinal study on disability progression in multiple sclerosis. Journal of Neurology, 2020, 267, 1536-1546.	3.6	35

#	Article	IF	CITATIONS
55	High spatial resolution inÂvivo magnetic resonance imaging of the human eye, orbit, nervus opticus and optic nerve sheath at 7.0 Tesla. Experimental Eye Research, 2014, 125, 89-94.	2.6	34
56	Pediatric onset multiple sclerosis: McDonald criteria 2010 and the contribution of spinal cord MRI. Multiple Sclerosis Journal, 2013, 19, 1330-1335.	3.0	33
57	Brain iron accumulation in Wilson's disease: A longitudinal imaging case study during anticopper treatment using 7.0T MRI and transcranial sonography. Journal of Magnetic Resonance Imaging, 2018, 47, 282-285.	3.4	29
58	Epstein-Barr virus antibodies in serum and DNA load in saliva are not associated with radiological or clinical disease activity in patients with early multiple sclerosis. PLoS ONE, 2017, 12, e0175279.	2.5	29
59	MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry. Brain Imaging and Behavior, 2019, 13, 1361-1374.	2.1	27
60	Longitudinal patterns of cortical thinning in multiple sclerosis. Human Brain Mapping, 2020, 41, 2198-2215.	3.6	26
61	Evaluation of the â€~ring sign' and the â€~core sign' as a magnetic resonance imaging marker of disease activity and progression in clinically isolated syndrome and early multiple sclerosis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732091548.	1.0	25
62	Serum neurofilament light in atrial fibrillation: clinical, neuroimaging and cognitive correlates. Brain Communications, 2020, 2, fcaa166.	3.3	24
63	Association of brain volume loss and long-term disability outcomes in patients with multiple sclerosis treated with teriflunomide. Multiple Sclerosis Journal, 2020, 26, 1207-1216.	3.0	23
64	Enlargement of Cerebral Ventricles as an Early Indicator of Encephalomyelitis. PLoS ONE, 2013, 8, e72841.	2.5	22
65	Clinical Correlations of Brain Lesion Location in Multiple Sclerosis: Voxel-Based Analysis of a Large Clinical Trial Dataset. Brain Topography, 2018, 31, 886-894.	1.8	22
66	Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases. Human Brain Mapping, 2019, 40, 4091-4104.	3.6	22
67	Impact of 3 Tesla MRI on interobserver agreement in clinically isolated syndrome: A MAGNIMS multicentre study. Multiple Sclerosis Journal, 2019, 25, 352-360.	3.0	22
68	7T MRI in natalizumab-associated PML and ongoing MS disease activity. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e171.	6.0	20
69	A comparison of brain magnetic resonance imaging lesions in multiple sclerosis by race with reference to disability progression. Journal of Neuroinflammation, 2018, 15, 255.	7.2	20
70	Attack-related damage of thalamic nuclei in neuromyelitis optica spectrum disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1156-1164.	1.9	20
71	Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology, 2013, 81, 1966-1966.	1.1	17
72	Detailing intra-lesional venous lumen shrinking in multiple sclerosis investigated by sFLAIR MRI at 7-T. Journal of Neurology, 2014, 261, 2032-2036.	3.6	17

#	Article	IF	CITATIONS
73	The choice of embedding media affects image quality, tissue R ₂ [*] , and susceptibility behaviors in postâ€mortem brain MR microscopy at 7.0T. Magnetic Resonance in Medicine, 2019, 81, 2688-2701.	3.0	17
74	Magnetic Resonance Phase Alterations in Multiple Sclerosis Patients with Short and Long Disease Duration. PLoS ONE, 2015, 10, e0128386.	2.5	16
75	Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder. European Radiology, 2017, 27, 2206-2215.	4.5	16
76	Brain Iron and Metabolic Abnormalities in C19orf12 Mutation Carriers: A 7.0 Tesla MRI Study in Mitochondrial Membrane Protein–Associated Neurodegeneration. Movement Disorders, 2020, 35, 142-150.	3.9	16
77	Epigallocatechin Gallate in Relapsing-Remitting Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	16
78	7â€Tesla <scp>Magnetic Resonance Imaging</scp> for Brain Iron Quantification in Homozygous and Heterozygous <i><scp>PANK</scp>2</i> Mutation Carriers. Movement Disorders Clinical Practice, 2014, 1, 329-335.	1.5	15
79	Design of TRUST, a non-interventional, multicenter, 3-year prospective study investigating an integrated patient management approach in patients with relapsing-remitting multiple sclerosis treated with natalizumab. BMC Neurology, 2016, 16, 98.	1.8	15
80	Future Brain and Spinal Cord Volumetric Imaging in the Clinic for Monitoring Treatment Response in MS. Current Treatment Options in Neurology, 2018, 20, 17.	1.8	15
81	Clinical associations of T2-weighted lesion load and lesion location in small vessel disease: Insights from a large prospective cohort study. NeuroImage, 2019, 189, 727-733.	4.2	15
82	Quantitative 7T MRI does not detect occult brain damage in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e541.	6.0	15
83	Efficacy and safety of ocrelizumab in patients with relapsingâ€remitting multiple sclerosis with suboptimal response to prior diseaseâ€modifying therapies: A primary analysis from the phase 3b CASTING singleâ€arm, openâ€label trial. European Journal of Neurology, 2022, 29, 790-801.	3.3	15
84	Renal Function and Body Mass Index Contribute to Serum Neurofilament Light Chain Levels in Elderly Patients With Atrial Fibrillation. Frontiers in Neuroscience, 2022, 16, 819010.	2.8	15
85	7 Tesla MRI of Balo's concentric sclerosis versus multiple sclerosis lesions. Annals of Clinical and Translational Neurology, 2018, 5, 900-912.	3.7	14
86	Progressive Multifocal Leukoencephalopathy in a Multiple Sclerosis Patient Diagnosed after Switching from Natalizumab to Fingolimod. Case Reports in Neurological Medicine, 2016, 2016, 1-8.	0.4	13
87	Moyamoya Vessel Pathology Imaged by Ultra–High-Field Magnetic Resonance Imaging at 7.0 T. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 1544-1551.	1.6	13
88	Design and construction of an innovative brain phantom prototype for MRI. Magnetic Resonance in Medicine, 2019, 81, 1165-1171.	3.0	13
89	Transient enlargement of brain ventricles during relapsing-remitting multiple sclerosis and experimental autoimmune encephalomyelitis. JCI Insight, 2020, 5, .	5.0	13
90	Treatment-resistant chronic headaches and focal pachymeningitis in a 46-year-old man: a rare presentation of Wegener's granulomatosis. Lancet Neurology, The, 2008, 7, 368-372.	10.2	12

#	Article	IF	CITATIONS
91	Targeting activated microglia in Alzheimer's pathology by intraventricular delivery of a phagocytosable MRI contrast agent in APP23 transgenic mice. NeuroImage, 2009, 46, 367-372.	4.2	12
92	Electrostatically stabilized magnetic nanoparticles – an optimized protocol to label murine T cells for in vivo MRI. Frontiers in Neurology, 2011, 2, 72.	2.4	12
93	Expression pattern of the thrombopoietin receptor (Mpl) in the murine central nervous system. BMC Developmental Biology, 2010, 10, 77.	2.1	10
94	Ultrahigh-field MPRAGE Magnetic Resonance Angiography at 7.0T in patients with cerebrovascular disease. European Journal of Radiology, 2015, 84, 2613-2617.	2.6	10
95	Classification of multiple sclerosis based on patterns of <scp>CNS</scp> regional atrophy covariance. Human Brain Mapping, 2021, 42, 2399-2415.	3.6	10
96	Central nervous system atrophy predicts future dynamics of disability progression in a realâ€world multiple sclerosis cohort. European Journal of Neurology, 2021, 28, 4153-4166.	3.3	10
97	Simultaneous dual contrast weighting using double echo rapid acquisition with relaxation enhancement (RARE) imaging. Magnetic Resonance in Medicine, 2014, 72, 1590-1598.	3.0	9
98	MRI-based diagnostic biomarkers for early onset pediatric multiple sclerosis. NeuroImage: Clinical, 2015, 7, 400-408.	2.7	9
99	Analysis of Lymphocytic DNA Damage in Early Multiple Sclerosis by Automated Gamma-H2AX and 53BP1 Foci Detection: A Case Control Study. PLoS ONE, 2016, 11, e0147968.	2.5	9
100	Neuromyelitis optica does not impact periventricular venous density versus healthy controls: a 7.0ÂTesla MRI clinical study. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 535-541.	2.0	9
101	Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study. NeuroImage: Clinical, 2021, 30, 102608.	2.7	9
102	Blood Pressure and Brain Lesions in Patients With Atrial Fibrillation. Hypertension, 2021, 77, 662-671.	2.7	8
103	Regional Cerebellar Volume Loss Predicts Future Disability in Multiple Sclerosis Patients. Cerebellum, 2022, 21, 632-646.	2.5	8
104	Effects of teriflunomide treatment on cognitive performance and brain volume in patients with relapsing multiple sclerosis: Post hoc analysis of the TEMSO core and extension studies. Multiple Sclerosis Journal, 2022, 28, 1719-1728.	3.0	8
105	Leptomeningeal and Intraparenchymal Blood Barrier Disruption in a MOG-lgG-Positive Patient. Case Reports in Neurological Medicine, 2018, 2018, 1-3.	0.4	7
106	Targeted Blood Brain Barrier Opening With Focused Ultrasound Induces Focal Macrophage/Microglial Activation in Experimental Autoimmune Encephalomyelitis. Frontiers in Neuroscience, 2021, 15, 665722.	2.8	6
107	Central Slab versus Whole Brain to Measure Brain Atrophy in Multiple Sclerosis. European Neurology, 2018, 80, 207-214.	1.4	5
108	White matter lesion location correlates with disability in relapsing multiple sclerosis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732090684.	1.0	5

#	Article	IF	CITATIONS
109	Longitudinal ultra-high field MRI of brain lesions in neuromyelitis optica spectrum disorders. Multiple Sclerosis and Related Disorders, 2020, 42, 102066.	2.0	4
110	Elastography Validity Criteria Definition Using Numerical Simulations and MR Acquisitions on a Low-Cost Structured Phantom. Frontiers in Physics, 2021, 9, .	2.1	4
111	Biomarkers of treatment response in patients with progressive multiple sclerosis treated with highâ€dose pharmaceuticalâ€grade biotin (MD1003). Brain and Behavior, 2021, 11, e01998.	2.2	3
112	Reliable and fast volumetry of the lumbar spinal cord using cord image analyser (Cordial). European Radiology, 2018, 28, 4488-4495.	4.5	2
113	068â€Evaluation of the long-term treatment effect of teriflunomide on cognitive outcomes and association with brain volume change: data from temso and its extension study. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, A28.1-A28.	1.9	2
114	Association of Heart Rate Variability With Silent Brain Infarcts in Patients With Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 2021, 8, 684461.	2.4	2
115	Right Hemispheric Predominance of Brain Infarcts in Atrial Fibrillation: A Lesion Mapping Analysis. Journal of Stroke, 2022, 24, 156-159.	3.2	2
116	Frequent but nonspecific venous narrowing in paediatric multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 1805-1805.	3.0	1
117	Neuromyelitis Optica Spectrum Disorders (NMOSD). , 2019, , 769-785.		1
118	Neuromyelitis Optica Spectrum Disorders (NMOSD). , 2019, , 1-17.		1
119	Untangling normal aging from disease-related brain atrophy in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e617.	6.0	1
120	Multiple Sclerosis, Blood Flow, and CSF Circulation. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1313-1313.	4.3	0
121	Improving Accuracy of Brainstem MRI Volumetry: Effects of Age and Sex, and Normalization Strategies. Frontiers in Neuroscience, 2020, 14, 609422.	2.8	Ο