Bice Conti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2410856/publications.pdf

Version: 2024-02-01

108046 4,787 143 37 citations h-index papers

60 g-index 145 145 145 5816 docs citations times ranked citing authors all docs

145109

#	Article	IF	CITATIONS
1	Design and optimization of 3D-bioprinted scaffold framework based on a new natural polymeric bioink. Journal of Pharmacy and Pharmacology, 2022, 74, 57-66.	1.2	1
2	Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers. International Journal of Molecular Sciences, 2022, 23, 1290.	1.8	27
3	Engineered Full Thickness Electrospun Scaffold for Esophageal Tissue Regeneration: From In Vitro to In Vivo Approach. Pharmaceutics, 2022, 14, 252.	2.0	3
4	CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles. Pharmaceuticals, 2022, 15, 103.	1.7	20
5	A Design of Experiment (DOE) approach to correlate PLA-PCL electrospun fibers diameter and mechanical properties for soft tissue regeneration purposes. Journal of Drug Delivery Science and Technology, 2022, 68, 103060.	1.4	8
6	Shape memory engineered scaffold (SMES) for potential repair of neural tube defects. Reactive and Functional Polymers, 2022, 173, 105223.	2.0	3
7	Tablet Formulations of Polymeric Electrospun Fibers for the Controlled Release of Drugs with pH-Dependent Solubility. Polymers, 2022, 14, 2127.	2.0	9
8	Electrophoretic deposition of ferulic acid loaded bioactive glass/chitosan as antibacterial and bioactive composite coatings. Surface and Coatings Technology, 2021, 405, 126657.	2.2	23
9	Design of epidermal growth factor immobilization on 3D biocompatible scaffolds to promote tissue repair and regeneration. Scientific Reports, 2021, 11, 2629.	1.6	15
10	Dermatillomania: Strategies for Developing Protective Biomaterials/Cloth. Pharmaceutics, 2021, 13, 341.	2.0	5
11	Electrospun tubular vascular grafts to replace damaged peripheral arteries: A preliminary formulation study. International Journal of Pharmaceutics, 2021, 596, 120198.	2.6	4
12	Microfluidic-assisted synthesis of multifunctional iodinated contrast agent polymeric nanoplatforms. International Journal of Pharmaceutics, 2021, 599, 120447.	2.6	9
13	A study focused on macrophages modulation induced by the Polymeric Electrospun Matrices (EL-Ms) for application in tissue regeneration: In vitro proof of concept. International Journal of Pharmaceutics, 2021, 603, 120712.	2.6	9
14	Tubular Electrospun Vancomycin-Loaded Vascular Grafts: Formulation Study and Physicochemical Characterization. Polymers, 2021, 13, 2073.	2.0	10
15	Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations. International Journal of Molecular Sciences, 2021, 22, 8064.	1.8	31
16	Nanotechnology, a booster for the multitarget drug verteporfin. Journal of Drug Delivery Science and Technology, 2021, 64, 102562.	1.4	2
17	Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics, 2021, 13, 1341.	2.0	20
18	Hyaluronic Acid-Based Nanoparticles for Protein Delivery: Systematic Examination of Microfluidic Production Conditions. Pharmaceutics, 2021, 13, 1565.	2.0	12

#	Article	IF	CITATIONS
19	Tableted hydrophilic electrospun nanofibers to promote meloxicam dissolution rate. Journal of Drug Delivery Science and Technology, 2021, , 102878.	1.4	4
20	Optimization of FDM 3D printing process parameters to produce haemodialysis curcumin-loaded vascular grafts. Drug Delivery and Translational Research, 2021, , 1.	3.0	1
21	Tobramycin Supplemented Small-Diameter Vascular Grafts for Local Antibiotic Delivery: A Preliminary Formulation Study. International Journal of Molecular Sciences, 2021, 22, 13557.	1.8	5
22	The Effect of Process Parameters on Alignment of Tubular Electrospun Nanofibers for Tissue Regeneration Purposes. Journal of Drug Delivery Science and Technology, 2020, 58, 101781.	1.4	26
23	Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics, 2020, 12, 735.	2.0	569
24	Zeinâ€Based Electrospun Fibers Containing Bioactive Glass with Antibacterial Capabilities. Macromolecular Bioscience, 2020, 20, e2000059.	2.1	16
25	High Efficiency Vibrational Technology (HEVT) for Cell Encapsulation in Polymeric Microcapsules. Pharmaceutics, 2020, 12, 469.	2.0	6
26	On-Chip Synthesis of Hyaluronic Acid-Based Nanoparticles for Selective Inhibition of CD44+ Human Mesenchymal Stem Cell Proliferation. Pharmaceutics, 2020, 12, 260.	2.0	19
27	Tissue Engineered Esophageal Patch by Mesenchymal Stromal Cells: Optimization of Electrospun Patch Engineering. International Journal of Molecular Sciences, 2020, 21, 1764.	1.8	18
28	Preliminary investigation on a new natural based poly(gammaâ€glutamic acid)/Chitosan bioink. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2718-2732.	1.6	23
29	Graphene Nanoplatelets for the Development of Reinforced PLA–PCL Electrospun Fibers as the Next-Generation of Biomedical Mats. Polymers, 2020, 12, 1390.	2.0	20
30	Biocompatible polymeric electrospun matrices: Micro–nanotopography effect on cell behavior. Journal of Applied Polymer Science, 2020, 137, 49223.	1.3	16
31	Metastatic disease in head & neck oncology. Acta Otorhinolaryngologica Italica, 2020, 40, S1-S86.	0.7	83
32	Microfluidic encapsulation method to produce stable liposomes containing iohexol. Journal of Drug Delivery Science and Technology, 2019, 54, 101340.	1.4	13
33	Release Profile of Gentamicin Sulfate from Polylactide-co-Polycaprolactone Electrospun Nanofiber Matrices. Pharmaceutics, 2019, 11, 161.	2.0	38
34	Poly(gamma-glutamic acid) based thermosetting hydrogels for injection: Rheology and functional parameters evaluation. Reactive and Functional Polymers, 2019, 140, 93-102.	2.0	16
35	Staggered Herringbone Microfluid Device for the Manufacturing of Chitosan/TPP Nanoparticles: Systematic Optimization and Preliminary Biological Evaluation. International Journal of Molecular Sciences, 2019, 20, 6212.	1.8	21
36	Design of copolymer PLA-PCL electrospun matrix for biomedical applications. Reactive and Functional Polymers, 2018, 124, 77-89.	2.0	65

#	Article	IF	Citations
37	lvermectin controlled release implants based on poly-D, l -lactide and poly-lμ-caprolactone. Journal of Drug Delivery Science and Technology, 2018, 46, 101-110.	1.4	12
38	Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles. International Journal of Pharmaceutics, 2018, 536, 165-177.	2.6	69
39	The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles. Pharmaceutics, 2018, 10, 267.	2.0	73
40	Intra-Articular Formulation of GE11-PLGA Conjugate-Based NPs for Dexamethasone Selective Targetingâ€"In Vitro Evaluation. International Journal of Molecular Sciences, 2018, 19, 2304.	1.8	17
41	Gentamicin Sulfate PEG-PLGA/PLGA-H Nanoparticles: Screening Design and Antimicrobial Effect Evaluation toward Clinic Bacterial Isolates. Nanomaterials, 2018, 8, 37.	1.9	40
42	Study on hydrophilicity and degradability of chitosan/polylactide-co-polycaprolactone nanofibre blend electrospun membrane. Carbohydrate Polymers, 2018, 199, 150-160.	5.1	42
43	Emerging and re-emerging infectious disease in otorhinolaryngology. Acta Otorhinolaryngologica Italica, 2018, 38, S1-S106.	0.7	6
44	GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview. Pharmaceutics, 2018, 10, 2.	2.0	69
45	Hyaluronic Acid-Decorated Chitosan Nanoparticles for CD44-Targeted Delivery of Everolimus. International Journal of Molecular Sciences, 2018, 19, 2310.	1.8	58
46	Design of a Bioabsorbable Multilayered Patch for Esophagus Tissue Engineering. Macromolecular Bioscience, 2017, 17, 1600426.	2.1	14
47	Natural based eumelanin nanoparticles functionalization and preliminary evaluation as carrier for gentamicin. Reactive and Functional Polymers, 2017, 114, 38-48.	2.0	16
48	Gentamicin-Loaded Thermosetting Hydrogel and Moldable Composite Scaffold: Formulation Study and Biologic Evaluation. Journal of Pharmaceutical Sciences, 2017, 106, 1596-1607.	1.6	33
49	Polyethylene Glycol-Poly-Lactide-co-Glycolide Block Copolymer-Based Nanoparticles as a Potential Tool for Off-Label Use of N-Acetylcysteine in the Treatment of Diastrophic Dysplasia. Journal of Pharmaceutical Sciences, 2017, 106, 3631-3641.	1.6	11
50	Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals, 2017, 10, 96.	1.7	120
51	Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization. International Journal of Pharmaceutics, 2016, 511, 1112-1123.	2.6	31
52	CNA-loaded PLGA nanoparticles improve humoral response againstS. aureus-mediated infections in a mouse model: subcutaneous vs. nasal administration strategy. Journal of Microencapsulation, 2016, 33, 750-762.	1.2	6
53	Islam as a new social actor in Italian cities: mosque controversies as sites of inclusion and separation. Religion, State and Society, 2016, 44, 238-257.	0.3	10
54	Formulation and inÂvitro characterization of a composite biodegradable scaffold as antibiotic delivery system and regenerative device for bone. Journal of Drug Delivery Science and Technology, 2016, 35, 124-133.	1.4	14

#	Article	IF	CITATIONS
55	Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus–oocyte complexes culture. Journal of Microencapsulation, 2016, 33, 137-145.	1.2	21
56	An experimental design approach to the preparation of pegylated polylactide-co-glicolide gentamicin loaded microparticles for local antibiotic delivery. Materials Science and Engineering C, 2016, 58, 909-917.	3.8	29
57	Controlled delivery systems for tissue repair and regeneration. Journal of Drug Delivery Science and Technology, 2016, 32, 206-228.	1.4	23
58	Smart Biodegradable Nanoparticulate Materials: Poly-lactide-co-glycolide Functionalization with Selected Peptides. Current Nanoscience, 2016, 12, 347-356.	0.7	7
59	InÂvitro characterization of an injectable in situ forming composite system for bone reconstruction. Polymer Degradation and Stability, 2015, 119, 151-158.	2.7	12
60	Stability Evaluation of Ivermectin-Loaded Biodegradable Microspheres. AAPS PharmSciTech, 2015, 16, 1129-1139.	1.5	11
61	Preliminary investigation on the design of biodegradable microparticles for ivermectin delivery: set up of formulation parameters. Drug Development and Industrial Pharmacy, 2015, 41, 1182-1192.	0.9	7
62	Preparation and Characterization of an Advanced Medical Device for Bone Regeneration. AAPS PharmSciTech, 2014, 15, 75-82.	1.5	7
63	Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Materials Science and Engineering C, 2014, 34, 130-139.	3.8	23
64	Adhesive microbeads for the targeting delivery of anticaries agents of vegetable origin. Food Chemistry, 2013, 138, 898-904.	4.2	15
65	Sub-unit vaccine against S. aureus-mediated infections: Set-up of nano-sized polymeric adjuvant. International Journal of Pharmaceutics, 2013, 452, 390-401.	2.6	19
66	Microencapsulation of a hydrophilic model molecule through vibration nozzle and emulsion phase inversion technologies. Journal of Microencapsulation, 2013, 30, 559-570.	1.2	17
67	Design of 3 <scp>D</scp> Hybrid Composite Scaffolds: Effect of Composition on Scaffold Structure and Cell Proliferation. Macromolecular Symposia, 2013, 334, 106-116.	0.4	3
68	Nanostructured Polymeric Functional Micelles for Drug Delivery Applications. Macromolecular Symposia, 2013, 334, 17-23.	0.4	14
69	Long-Term Effect of Gamma Irradiation on the Functional Properties and Cytocompatibility of Multiblock Co-Polymer Films. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 2223-2240.	1.9	11
70	Diaminobenzidine photoconversion is a suitable tool for tracking the intracellular location of fluorescently labelled nanoparticles at transmission electron microscopy. European Journal of Histochemistry, 2012, 56, 20.	0.6	40
71	La emergencia del Islam en el espacio publico italiano. Archives De Sciences Sociales Des Religions, 2012, , 119-136.	0.0	3
72	Polymer Scaffolds for Bone Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 259-285.	0.7	3

#	Article	IF	CITATIONS
73	Bioadhesive Microspheres for Ophthalmic Administration of Acyclovir. Journal of Pharmacy and Pharmacology, 2011, 49, 737-742.	1.2	138
74	Evaluation of official instrumental methods for the determination of particulate matter contamination in large volume parenteral solutions. Journal of Pharmacy and Pharmacology, 2011, 38, 785-790.	1.2	2
75	A preliminary study on the morphological and release properties of hydroxyapatite–alendronate composite materials. Journal of Microencapsulation, 2011, 28, 395-405.	1.2	14
76	Induction of an <i>in vitro</i> reversible hypometabolism through chitosan-based nanoparticles. Journal of Microencapsulation, 2011, 28, 229-239.	1.2	11
77	Biodegradable microspheres for prolidase delivery to human cultured fibroblasts. Journal of Pharmacy and Pharmacology, 2010, 56, 597-603.	1.2	12
78	Effect of porogen on the physico-chemical properties and degradation performance of PLGA scaffolds. Polymer Degradation and Stability, 2010, 95, 694-701.	2.7	57
79	Stem Cells Grown in Osteogenic Medium on PLGA, PLGA/HA, and Titanium Scaffolds for Surgical Applications. Bioinorganic Chemistry and Applications, 2010, 2010, 1-12.	1.8	29
80	Improved cell growth by Bio-Oss/PLA scaffolds for use as a bone substitute. Technology and Health Care, 2009, 16, 401-413.	0.5	17
81	<i>In vitro</i> evaluation of chondroitin sulphate-chitosan microspheres as carrier for the delivery of proteins. Journal of Microencapsulation, 2009, 26, 535-543.	1.2	27
82	Site-directed PEGylation as successful approach to improve the enzyme replacement in the case of prolidase. International Journal of Pharmaceutics, 2008, 358, 230-237.	2.6	22
83	Non-viral dried powders for respiratory gene delivery prepared by cationic and chitosan loaded liposomes. International Journal of Pharmaceutics, 2008, 364, 108-118.	2.6	30
84	\hat{I}^3 -Irradiation of PEGd,IPLA and PEG-PLGA Multiblock Copolymers: I. Effect of Irradiation Doses. AAPS PharmSciTech, 2008, 9, 718-25.	1.5	43
85	γ-irradiation of PEGd,lPLA and PEG-PLGA Multiblock Copolymers: II. Effect of Oxygen and EPR Investigation. AAPS PharmSciTech, 2008, 9, 1110-1118.	1.5	23
86	Efficacy of oleuropein against UVB irradiation: preliminary evaluation. International Journal of Cosmetic Science, 2008, 30, 113-120.	1.2	42
87	Poly(<scp>D,L</scp> â€lactide) nanoencapsulation to reduce photoinactivation of a sunscreen agent. International Journal of Cosmetic Science, 2008, 30, 219-227.	1.2	35
88	Ex vivo evaluation of prolidase loaded chitosan nanoparticles for the enzyme replacement therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 58-65.	2.0	38
89	Polyethylenglycol-co-poly-D,L-lactide copolymer based microspheres: Preparation, characterization and delivery of a model protein. Journal of Microencapsulation, 2008, 25, 330-338.	1.2	16
90	Improved cell growth by Bio-Oss/PLA scaffolds for use as a bone substitute. Technology and Health Care, 2008, 16, 401-13.	0.5	12

#	Article	IF	Citations
91	Chitosan glutamate nanoparticles for protein delivery: Development and effect on prolidase stability. Journal of Microencapsulation, 2007, 24, 553-564.	1.2	44
92	Investigation of the degradation behaviour of poly(ethylene glycol-co-d,l-lactide) copolymer. Polymer Degradation and Stability, 2007, 92, 1660-1668.	2.7	44
93	Technological strategies to improve photostability of a sunscreen agent. International Journal of Cosmetic Science, 2006, 28, 148-149.	1.2	3
94	The role of emerging techniques in the investigation of prolidase deficiency: From diagnosis to the development of a possible therapeutical approach. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 832, 1-8.	1.2	31
95	5-methyl-pyrrolidinone chitosan films as carriers for buccal administration of proteins. AAPS PharmSciTech, 2006, 7, E107-E113.	1.5	27
96	Surface characterization by atomic force microscopy of sterilized PLGA microspheres. Journal of Microencapsulation, 2006, 23, 123-133.	1.2	12
97	5-Methyl-Pyrrolidinone Chitosan Films as Carriers for Buccal Administration of Proteins. AAPS PharmSciTech, 2006, 07, E0.	1.5	5
98	Intracellular delivery of liposome-encapsulated prolidase in cultured fibroblasts from prolidase-deficient patients. Journal of Controlled Release, 2005, 102, 181-190.	4.8	25
99	The effect of \hat{I}^3 -irradiation on PLGA/PEG microspheres containing ovalbumin. Journal of Controlled Release, 2005, 107, 78-90.	4.8	46
100	Evaluation of bioadhesive performance of chitosan derivatives as films for buccal application. Journal of Drug Delivery Science and Technology, 2005, 15, 459-463.	1.4	9
101	Poly(lactide-co-glycolide) microspheres containing bupivacaine: comparison between gamma and beta irradiation effects. Journal of Controlled Release, 2003, 90, 281-290.	4.8	54
102	PLGA microspheres for oral osteopenia treatment: preliminary "in vitroâ€∤"in vivo―evaluation. International Journal of Pharmaceutics, 2003, 256, 153-160.	2.6	16
103	Radiation-induced free radical reactions in polymer/drug systems for controlled release: an EPR investigation. Radiation Physics and Chemistry, 2003, 67, 61-72.	1.4	28
104	Miconazole-loaded 6-oxychitin–chitosan microcapsules. Carbohydrate Polymers, 2003, 52, 11-18.	5.1	31
105	Periodontal delivery of ipriflavone: new chitosan/PLGA film delivery system for a lipophilic drug. International Journal of Pharmaceutics, 2003, 252, 1-9.	2.6	109
106	Evaluation of enzyme stability during preparation of polylactide-co-glycolide microspheres. Journal of Microencapsulation, 2002, 19, 591-602.	1.2	9
107	Gamma irradiation effects and EPR investigation on poly(lactide-co-glycolide) microspheres containing bupivacaine. Il Farmaco, 2002, 57, 427-433.	0.9	22
108	Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. International Journal of Pharmaceutics, 2002, 246, 37-45.	2.6	139

#	Article	IF	Citations
109	Emulsion Spray-Drying for the Preparation of Albumin-Loaded PLGA Microspheres. Drug Development and Industrial Pharmacy, 2001, 27, 745-750.	0.9	44
110	Long-term release of clodronate from biodegradable microspheres. AAPS PharmSciTech, 2001, 2, 6-14.	1.5	52
111	Gamma irradiation effects on stability of poly(lactide-co-glycolide) microspheres containing clonazepam. Journal of Controlled Release, 2001, 75, 317-330.	4.8	80
112	Enzyme loaded biodegradable microspheres in vitro. Journal of Controlled Release, 2001, 77, 287-295.	4.8	44
113	Study on glycolic acid delivery by liposomes and microspheres. International Journal of Pharmaceutics, 2000, 196, 51-61.	2.6	88
114	Microparticulate drug delivery systems. , 1999, 87, 305-313.		17
115	Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres. Carbohydrate Polymers, 1998, 36, 81-88.	5.1	112
116	In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. Journal of Controlled Release, 1998, 56, 53-62.	4.8	57
117	Gamma irradiation effects on poly(dl-lactictide-co-glycolide) microspheres. Journal of Controlled Release, 1998, 56, 219-229.	4.8	135
118	Preparation and characterization of ampicillin loaded methylpyrrolidinone chitosan and chitosan microspheres. Biomaterials, 1998, 19, 157-161.	5.7	123
119	Comparative study of `in vitro' release of anti-inflammatory drugs from polylactide-co-glycolide microspheres. International Journal of Pharmaceutics, 1998, 176, 85-98.	2.6	41
120	A proposed new method for the crosslinking of chitosan microspheres. Drug Delivery, 1998, 5, 87-93.	2.5	11
121	Hyaluronidase-injectable microparticles intended for the treatment of extravasation. Journal of Microencapsulation, 1998, 15, 85-92.	1.2	7
122	Clonazepam microencapsulation in poly-D,L-lactide-coglycolide microspheres. Journal of Microencapsulation, 1998, 15, 431-443.	1.2	17
123	Indomethacin-Dipalmitoylphosphatidylcholine Interaction. A Calorimetric Study of Drug Release from Poly(Lactide-co-glycolide) Microspheres into Multilamellar Vesicles. Drug Delivery, 1997, 4, 273-279.	2.5	11
124	Thymopentin loaded Microsphere Preparation by $w/o/w$ Emulsion Technique: In Vitro/ex Vivo Evaluation. Journal of Microencapsulation, 1997, 14, 303-310.	1.2	12
125	Biodegradable microspheres for the intravitreal administration of acyclovir: in vitro/in vivo evaluation. European Journal of Pharmaceutical Sciences, 1997, 5, 287-293.	1.9	56
126	A multiple emulsion method to entrap a lipophilic compound into chitosan microspheres. International Journal of Pharmaceutics, 1997, 152, 237-246.	2.6	63

#	Article	IF	Citations
127	Evaluation of process parameters involved in chitosan microsphere preparation by the o/w/o multiple emulsion method. Journal of Microencapsulation, 1996, 13, 679-688.	1.2	34
128	Effect of molecular weight and storage times on tolmetin release from poly-d,l-lactide microspheres to lipid model membrane. A calorimetric study. Journal of Controlled Release, 1996, 40, 277-284.	4.8	30
129	Cellulose acetate trimellitate ethylcellulose blends for non-steroidal anti-inflammatory drug (NSAID) microspheres. Journal of Microencapsulation, 1996, 13, 89-98.	1.2	20
130	Investigation on Process Parameters Involved in Polylactide-Co-Glycolide Microspheres Preparation. Drug Development and Industrial Pharmacy, 1995, 21, 615-622.	0.9	24
131	Cellulose Acetate Trimellitate Microspheres Containing NSAIDS. Drug Development and Industrial Pharmacy, 1995, 21, 315-330.	0.9	9
132	Testing of "In Vitro―Dissolution Behaviour of Microparticulate Drug Delivery Systems. Drug Development and Industrial Pharmacy, 1995, 21, 1223-1233.	0.9	22
133	Cellulose Acetate Butyrate and Polycaprolactone for Ketoprofen Spray-Dried Microsphere Preparation. Journal of Microencapsulation, 1994, 11, 381-393.	1.2	35
134	Calorimetric studies on tolmetin release from poly-dl-lactide microspheres to lipid model membrane. International Journal of Pharmaceutics, 1994, 103, 217-223.	2.6	12
135	Spray-Dried Albumin Microspheres for the Intra-Articular Delivery of Dexamethasone. Journal of Microencapsulation, 1994, 11, 445-454.	1.2	56
136	Spray Dried Polylactide Microsphere Preparation: Influence of the Technological Parameters. Drug Development and Industrial Pharmacy, 1994, 20, 235-258.	0.9	54
137	Evaluation of spray drying as a method for polylactide and polylactide-co-glycolide microsphere preparation. Journal of Microencapsulation, 1993, 10, 487-497.	1.2	70
138	Solvent evaporation, solvent extraction and spray drying for polylactide microsphere preparation. International Journal of Pharmaceutics, 1992, 84, 151-159.	2.6	58
139	Use of polylactic acid for the preparation of microparticulate drug delivery systems. Journal of Microencapsulation, 1991, 9, 153-166.	1.2	62
140	Particulate contamination from siliconized rubber stoppers. International Journal of Pharmaceutics, 1991, 74, 175-181.	2.6	4
141	Aluminium, cadmium and lead in large volume parenterals: contamination levels and sources. International Journal of Pharmaceutics, 1989, 54, 143-148.	2.6	16
142	Particulate matter contamination of small volume patenterals. International Journal of Pharmaceutics, 1989, 51, 55-61.	2.6	2
143	Particulate contamination in parenteral type medical devices. International Journal of Pharmaceutics, 1988, 48, 255-265.	2.6	2