Gaofeng Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2410806/publications.pdf

Version: 2024-02-01

71 papers

3,949 citations

31 h-index

147726

61 g-index

74 all docs

74 docs citations

74 times ranked 5070 citing authors

#	Article	IF	CITATIONS
1	Construction of Fe3O4@ \hat{l}^2 -CD/g-C3N4 nanocomposite catalyst for degradation of PCBs in wastewater through photodegradation and heterogeneous Fenton oxidation. Chemical Engineering Journal, 2022, 429, 132445.	6.6	35
2	Constructing Synergistic Znâ€N ₄ and Feâ€N ₄ O Dualâ€6ites from the COF@MOF Derived Hollow Carbon for Oxygen Reduction Reaction. Small Structures, 2022, 3, .	6.9	46
3	High Proton-Conductive and Temperature-Tolerant PVC-P4VP Membranes towards Medium-Temperature Water Electrolysis. Membranes, 2022, 12, 363.	1.4	4
4	Ultrafast solid-phase synthesis of 2D pyrene-alkadiyne frameworks towards efficient capture of radioactive iodine. Chemical Engineering Journal, 2022, 441, 135996.	6.6	10
5	Superhydrophobic-omniphobic membrane with anti-deformable pores for membrane distillation with excellent wetting resistance. Journal of Membrane Science, 2021, 620, 118768.	4.1	68
6	Hierarchical confinement of PtZn alloy nanoparticles and single-dispersed Zn atoms on COF@MOF-derived carbon towards efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 13625-13630.	5.2	33
7	Precise Design of Covalent Organic Frameworks for Electrocatalytic Hydrogen Peroxide Production. Chemistry - an Asian Journal, 2021, 16, 498-502.	1.7	7
8	Low-temperature combustion of methane over graphene templated Co3O4 defective-nanoplates. Scientific Reports, 2021, 11, 12604.	1.6	7
9	Interfacial Ions Sieving for Ultrafast and Complete Desalination through 2D Nanochannel Defined Graphene Composite Membranes. ACS Nano, 2021, 15, 9871-9881.	7.3	39
10	Influence of Stabilizers on the Performance of Au/TiO ₂ Catalysts for CO Oxidation. ACS Catalysis, 2021, 11, 11607-11615.	5.5	19
11	Tungsten-doped siliceous mesocellular foams-supported platinum catalyst for glycerol hydrogenolysis to 1,3-propanediol. Applied Catalysis B: Environmental, 2021, 297, 120428.	10.8	27
12	Direct oxidation of CH4 to HCOOH over extra-framework stabilized Fe@MFI catalyst at low temperature. Fuel, 2021, 305, 121624.	3.4	5
13	Defective C3N4 frameworks coordinated diatomic copper catalyst: Towards mild oxidation of methane to C1 oxygenates. Applied Catalysis B: Environmental, 2021, 299, 120682.	10.8	32
14	Sintering Activated Atomic Palladium Catalysts with High-Temperature Tolerance of $\hat{a}^4,000\hat{A}$ °C. Cell Reports Physical Science, 2021, 2, 100287.	2.8	7
15	Atomic Co–N ₄ and Co nanoparticles confined in COF@ZIF-67 derived core–shell carbon frameworks: bifunctional non-precious metal catalysts toward the ORR and HER. Journal of Materials Chemistry A, 2021, 10, 228-233.	5.2	61
16	Quantitative Conversion of Methanol to Methyl Formate on Graphene-Confined Nano-Oxides. IScience, 2020, 23, 101157.	1.9	11
17	Monolithic and self-roughened Janus fibrous membrane with superhydrophilic/omniphobic surface for robust antifouling and antiwetting membrane distillation. Journal of Membrane Science, 2020, 615, 118499.	4.1	68
18	Excessive iodine addition leads to room-temperature superionic Cu2S with enhanced thermoelectric properties and improved thermal stability. Materials Today Physics, 2020, 15, 100271.	2.9	10

#	Article	IF	Citations
19	Complete Formaldehyde Removal over 3D Structured Na _{1.1} Mn ₄ O ₈ @Mn ₅ O ₈ Biphasic rystals. ChemCatChem, 2020, 12, 3512-3522.	1.8	8
20	Ni/Fe Clusters and Nanoparticles Confined by Covalent Organic Framework Derived Carbon as Highly Active Catalysts toward Oxygen Reduction Reaction and Oxygen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000115.	2.7	34
21	Bioinspired superwetting fibrous skin with hierarchical roughness for efficient oily water separation. Science of the Total Environment, 2020, 744, 140822.	3.9	30
22	Mechanically durable biomimetic fibrous membrane with superhydrophobicity and superoleophilicity for aqueous oil separation. Chinese Chemical Letters, 2020, 31, 2619-2622.	4.8	36
23	Co-Electrospun VTiO _{<i>x</i>} Hollow Nanofibers for Selective Oxidation of Methanol to High Value Chemicals. ACS Applied Nano Materials, 2019, 2, 5224-5232.	2.4	7
24	Dual-Role Membrane as NH ₃ Permselective Reactor and Azeotrope Separator in Urea Alcoholysis. ACS Central Science, 2019, 5, 1834-1843.	5.3	17
25	Fast synthesis of hierarchical CHA/AEI intergrowth zeolite with ammonium salts as mineralizing agent and its application for MTO process. Chemical Papers, 2019, 73, 221-237.	1.0	13
26	Optimized rapid thermal processing for the template removal of SAPO-34 zeolite membranes. Journal of Membrane Science, 2018, 552, 13-21.	4.1	55
27	Selfâ€Assembly of Thiourea rosslinked Graphene Oxide Framework Membranes toward Separation of Small Molecules. Advanced Materials, 2018, 30, e1705775.	11.1	154
28	Ultralow Pt Catalyst for Formaldehyde Removal: The Determinant Role of Support. IScience, 2018, 9, 487-501.	1.9	33
29	Ultrafast synthesis of thin SAPO-34 zeolite membrane by oil-bath heating. Microporous and Mesoporous Materials, 2017, 241, 392-399.	2.2	46
30	Enhanced MTO performance over acid treated hierarchical SAPO-34. Chinese Journal of Catalysis, 2017, 38, 123-130.	6.9	69
31	Selective Oxidation of Methanol to Dimethoxymethane at Low Temperatures through Sizeâ€controlled VTiO _{<i>x</i>} Nanoparticles. ChemCatChem, 2017, 9, 1776-1781.	1.8	12
32	Adsorption-intensified degradation of organic pollutants over bifunctional α-Fe@carbon nanofibres. Environmental Science: Nano, 2017, 4, 302-306.	2.2	61
33	Threeâ€component mixed matrix organic/inorganic hybrid membranes for pervaporation separation of ethanol–water mixture. Journal of Applied Polymer Science, 2017, 134, .	1.3	11
34	Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes. Nature Communications, 2017, 8, 825.	5.8	110
35	High-temperature stability of Pd alloy membranes containing Cu and Au. Journal of Membrane Science, 2017, 544, 151-160.	4.1	45
36	Ultrahigh adsorption capacity of anionic dyes with sharp selectivity through the cationic charged hybrid nanofibrous membranes. Chemical Engineering Journal, 2017, 313, 957-966.	6.6	160

#	Article	IF	Citations
37	Synthesis of all-silica DDR zeolite in an environment-friendly way. Microporous and Mesoporous Materials, 2017, 239, 34-39.	2.2	18
38	Rapid capture of Ponceau S via a hierarchical organic–inorganic hybrid nanofibrous membrane. Journal of Materials Chemistry A, 2016, 4, 5423-5427.	5.2	24
39	Ultrafast microwave synthesis of all-silica DDR zeolite. Microporous and Mesoporous Materials, 2016, 228, 54-58.	2.2	18
40	Stable and efficient aromatic yield from methanol over alkali treated hierarchical Zn-containing HZSM-5 zeolites. Microporous and Mesoporous Materials, 2016, 231, 110-116.	2.2	52
41	Solventâ€Free Synthesis of <i>c</i> àêAxis Oriented ZSMâ€5 Crystals with Enhanced Methanol to Gasoline Catalytic Activity. ChemCatChem, 2016, 8, 3317-3322.	1.8	29
42	Solventâ€Free Synthesis of <i>c</i> â€Axis Oriented ZSMâ€5 Crystals with Enhanced Methanol to Gasoline Catalytic Activity. ChemCatChem, 2016, 8, 3305-3305.	1.8	2
43	Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor. Journal of Membrane Science, 2016, 515, 212-218.	4.1	6
44	Synthesis of high performance SAPO-34 zeolite membrane by a novel two-step hydrothermal synthesisÂ+Âdry gel conversion method. Microporous and Mesoporous Materials, 2016, 225, 261-271.	2.2	46
45	Coke suppression in MTO over hierarchical SAPO-34 zeolites. RSC Advances, 2016, 6, 28787-28791.	1.7	63
46	Facile one-pot solvent-free synthesis of hierarchical ZSM-5 for methanol to gasoline conversion. RSC Advances, 2016, 6, 15816-15820.	1.7	30
47	Rapid synthesis and characterization of DD3R zeolite with (NH4)2SiF6 as silica source. Microporous and Mesoporous Materials, 2016, 225, 312-322.	2.2	19
48	Highly Efficient and Stable Vanadia–Titania–Sulfate Catalysts for Methanol Oxidation to Methyl Formate: Synthesis and Mechanistic Study. Journal of Physical Chemistry C, 2016, 120, 6591-6600.	1.5	22
49	Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 500, 66-75.	4.1	123
50	Synthesis and characterization of all-silica DDR zeolite by microwave heating. Microporous and Mesoporous Materials, 2016, 219, 103-111.	2.2	32
51	Preparation and characterization of <scp>S</scp> ilicaliteâ€1/ <scp>PDMS</scp> surface sieving pervaporation membrane for separation of ethanol/water mixture. Journal of Applied Polymer Science, 2015, 132, .	1.3	17
52	Sharp molecular-sieving of alcohol–water mixtures over phenyldiboronic acid pillared graphene oxide framework (GOF) hybrid membrane. Chemical Communications, 2015, 51, 7345-7348.	2.2	62
53	A novel Cu–Mn/Ca–Zr catalyst for the synthesis of methyl formate from syngas. RSC Advances, 2015, 5, 67630-67637.	1.7	17
54	Fast synthesis of submicron all-silica CHA zeolite particles using a seeding method. RSC Advances, 2015, 5, 27087-27090.	1.7	21

#	Article	IF	CITATIONS
55	Fast capture of methyl-dyes over hierarchical amino-Co _{0.3} Ni _{0.7} Fe ₂ O ₄ @SiO ₂ nanofibrous membranes. Journal of Materials Chemistry A, 2015, 3, 22000-22004.	5.2	34
56	A simple approach to uniform PdAg alloy membranes: Comparative study of conventional and silver concentration-controlled co-plating. International Journal of Hydrogen Energy, 2014, 39, 4427-4436.	3.8	6
57	Synthesis and characterization of a novel type of mixed matrix membrane: surface sieving membrane. RSC Advances, 2014, 4, 10140.	1.7	13
58	Hydrogen-induced high-temperature segregation in palladium silver membranes. Physical Chemistry Chemical Physics, 2014, 16, 25330-25336.	1.3	10
59	Efficient dehydration of the organic solvents through graphene oxide (GO)/ceramic composite membranes. RSC Advances, 2014, 4, 52012-52015.	1.7	54
60	Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam. Journal of Power Sources, 2013, 225, 251-256.	4.0	41
61	A Green Approach to Ethyl Acetate: Quantitative Conversion of Ethanol through Direct Dehydrogenation in a Pd–Ag Membrane Reactor. Chemistry - A European Journal, 2012, 18, 15940-15943.	1.7	33
62	Compensation Effect in H2 Permeation Kinetics of PdAg Membranes. Journal of Physical Chemistry C, 2012, 116, 18101-18107.	1.5	18
63	On alloying and low-temperature stability of thin, supported PdAg membranes. International Journal of Hydrogen Energy, 2012, 37, 6012-6019.	3.8	38
64	Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 2011, 47, 2071.	2.2	1,330
65	Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties. Journal of Membrane Science, 2011, 379, 46-51.	4.1	204
66	Direct H2O2 synthesis over Pd membranes at elevated temperatures. Journal of Membrane Science, 2010, 348, 160-166.	4.1	35
67	Preparation and performance of thin-layered PdAu/ceramic composite membranes. International Journal of Hydrogen Energy, 2010, 35, 4201-4208.	3.8	45
68	H2O2 synthesis over PdAu membranes. Catalysis Today, 2010, 156, 118-123.	2.2	16
69	Characterization and Performance of High-Flux PdAu/Ceramic Composite Membranes. Chinese Journal of Catalysis, 2010, 31, 711-715.	6.9	1
70	Impact of support mass flow resistance on low-temperature H2 permeation characteristics of a Pd95Ag5/Al2O3 composite membrane. Journal of Membrane Science, 2009, 326, 681-687.	4.1	41
71	Defect sealing in Pd membranes via point plating. Journal of Membrane Science, 2009, 328, 6-10.	4.1	28