Benjamin R Lichman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2410287/publications.pdf

Version: 2024-02-01

567144 752573 22 926 15 20 citations g-index h-index papers 26 26 26 945 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Phylogeny-Aware Chemoinformatic Analysis of Chemical Diversity in Lamiaceae Enables Iridoid Pathway Assembly and Discovery of Aucubin Synthase. Molecular Biology and Evolution, 2022, 39, .	3.5	4
2	Plant biosynthetic gene clusters in the context of metabolic evolution. Natural Product Reports, 2022, 39, 1465-1482.	5.2	21
3	The scaffold-forming steps of plant alkaloid biosynthesis. Natural Product Reports, 2021, 38, 103-129.	5.2	94
4	Cell-Free Total Biosynthesis of Plant Terpene Natural Products Using an Orthogonal Cofactor Regeneration System. ACS Catalysis, 2021, 11, 9898-9903.	5.5	16
5	Dreaming of clean bean protein. Nature Plants, 2021, 7, 860-861.	4.7	O
6	Nature's Chemists: The Discovery and Engineering of Phytochemical Biosynthesis. Frontiers in Chemistry, 2020, 8, 596479.	1.8	16
7	Single step syntheses of (1S)-aryl-tetrahydroisoquinolines by norcoclaurine synthases. Communications Chemistry, 2020, 3, .	2.0	10
8	The evolutionary origins of the cat attractant nepetalactone in catnip. Science Advances, 2020, 6, eaba0721.	4.7	70
9	Gene and genome duplications in the evolution of chemodiversity: perspectives from studies of Lamiaceae. Current Opinion in Plant Biology, 2020, 55, 74-83.	3.5	44
10	Biocatalytic Strategies towards [4+2] Cycloadditions. Chemistry - A European Journal, 2019, 25, 6864-6877.	1.7	38
11	Frontispiece: Biocatalytic Strategies towards [4+2] Cycloadditions. Chemistry - A European Journal, 2019, 25, .	1.7	O
12	Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis. Nature Chemical Biology, 2019, 15, 71-79.	3.9	56
13	One-pot chemoenzymatic synthesis of trolline and tetrahydroisoquinoline analogues. Chemical Communications, 2018, 54, 1323-1326.	2.2	36
14	Phylogenomic Mining of the Mints Reveals Multiple Mechanisms Contributing to the Evolution of Chemical Diversity in Lamiaceae. Molecular Plant, 2018, 11, 1084-1096.	3.9	109
15	Enzyme catalysed Pictet-Spengler formation of chiral 1,1'-disubstituted- and spiro-tetrahydroisoquinolines. Nature Communications, 2017, 8, 14883.	5.8	75
16	Structural Evidence for the Dopamine-First Mechanism of Norcoclaurine Synthase. Biochemistry, 2017, 56, 5274-5277.	1.2	40
17	Enzymatic and Chemoenzymatic Threeâ€6tep Cascades for the Synthesis of Stereochemically Complementary Trisubstituted Tetrahydroisoquinolines. Angewandte Chemie - International Edition, 2017, 56, 12503-12507.	7.2	85
18	Enzymatic and Chemoenzymatic Threeâ€Step Cascades for the Synthesis of Stereochemically Complementary Trisubstituted Tetrahydroisoquinolines. Angewandte Chemie, 2017, 129, 12677-12681.	1.6	21

#	Article	IF	CITATIONS
19	A transatlantic perspective on 20 emerging issues in biological engineering. ELife, 2017, 6, .	2.8	49
20	One-pot triangular chemoenzymatic cascades for the syntheses of chiral alkaloids from dopamine. Green Chemistry, 2015, 17, 852-855.	4.6	70
21	â€~Dopamineâ€first' mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile. FEBS Journal, 2015, 282, 1137-1151.	2.2	60
22	The Folding of a Family of Three-Helix Bundle Proteins: Spectrin R15 Has a Robust Folding Nucleus, Unlike Its Homologous Neighbours. Journal of Molecular Biology, 2014, 426, 1600-1610.	2.0	11