
Joanna Tannous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2409984/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	LaeA regulation of secondary metabolism modulates virulence in <i>Penicillium expansum</i> and is mediated by sucrose. Molecular Plant Pathology, 2017, 18, 1150-1163.	4.2	93
2	Patulin is a cultivarâ€dependent aggressiveness factor favouring the colonization of apples by <scp><i>P</i></scp> <i>enicillium expansum</i> . Molecular Plant Pathology, 2016, 17, 920-930.	4.2	89
3	Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum. International Journal of Food Microbiology, 2014, 189, 51-60.	4.7	88
4	Secondary metabolism in <i>Penicillium expansum</i> : Emphasis on recent advances in patulin research. Critical Reviews in Food Science and Nutrition, 2018, 58, 2082-2098.	10.3	71
5	Patulin transformation products and last intermediates in its biosynthetic pathway, E- and Z-ascladiol, are not toxic to human cells. Archives of Toxicology, 2017, 91, 2455-2467.	4.2	69
6	Fungal attack and host defence pathways unveiled in nearâ€avirulent interactions of <i>Penicillium expansum creA </i> mutants on apples. Molecular Plant Pathology, 2018, 19, 2635-2650.	4.2	66
7	Lipo-chitooligosaccharides as regulatory signals of fungal growth and development. Nature Communications, 2020, 11, 3897.	12.8	65
8	A study on the physicochemical parameters for <i><scp>P</scp>enicillium expansum</i> growth and patulin production: effect of temperature, pH, and water activity. Food Science and Nutrition, 2016, 4, 611-622.	3.4	60
9	Bacterial–fungal interactions revealed by genome-wide analysis of bacterial mutant fitness. Nature Microbiology, 2021, 6, 87-102.	13.3	49
10	NRPS-Derived Isoquinolines and Lipopetides Mediate Antagonism between Plant Pathogenic Fungi and Bacteria. ACS Chemical Biology, 2018, 13, 171-179.	3.4	38
11	Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples. Food Microbiology, 2015, 50, 28-37.	4.2	36
12	Apple Intrinsic Factors Modulating the Global Regulator, LaeA, the Patulin Gene Cluster and Patulin Accumulation During Fruit Colonization by Penicillium expansum. Frontiers in Plant Science, 2018, 9, 1094.	3.6	35
13	New Insight Into Pathogenicity and Secondary Metabolism of the Plant Pathogen Penicillium expansum Through Deletion of the Epigenetic Reader SntB. Frontiers in Microbiology, 2020, 11, 610.	3.5	35
14	Contribution of ATPase copper transporters in animal but not plant virulence of the crossover pathogen <i>Aspergillus flavus</i> . Virulence, 2018, 9, 1273-1286.	4.4	29
15	A Comparative Study on Antiradical and Antimicrobial Properties of Red Grapes Extracts Obtained from Different <i>Vitis vinifera</i> Varieties. Food and Nutrition Sciences (Print), 2012, 03, 1420-1432.	0.4	28