Bruce E Koel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2409979/bruce-e-koel-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 326 13,377 102 h-index g-index citations papers 6.22 346 14,319 4.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
326	Plasma-assisted catalysis for ammonia synthesis in a dielectric barrier discharge reactor: key surface reaction steps and potential causes of low energy yield. <i>Journal Physics D: Applied Physics</i> , 2022 , 55, 055202	3	3
325	Oxidation of lithium plasma facing components and its effect on plasma performance in the lithium tokamak experiment-# <i>Plasma Physics and Controlled Fusion</i> , 2021 , 63, 025007	2	O
324	Experimental verification of ion impact angle distribution at divertor surfaces using micro-engineered targets on DiMES at DIII-D. <i>Nuclear Materials and Energy</i> , 2021 , 27, 100965	2.1	4
323	Controlled Dy-doping to nickel-rich cathode materials in high temperature aerosol synthesis. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 6623-6630	5.9	2
322	Thermal stability of oxidized ultrathin Li films on TZM for plasma facing components. <i>Journal of Nuclear Materials</i> , 2021 , 543, 152587	3.3	1
321	Mid-Infrared Scattering in EAlO Catalytic Powders. Applied Spectroscopy, 2021, 75, 706-717	3.1	
320	Visualizing Zinc Dendrites in Minimal Architecture Zinc Bromine Batteries via in-house Transmission X-ray Microscopy. <i>Microscopy and Microanalysis</i> , 2021 , 27, 2448-2451	0.5	1
319	Increasing Iridium Oxide Activity for the Oxygen Evolution Reaction with Hafnium Modification. Journal of the American Chemical Society, 2021 , 143, 15616-15623	16.4	12
318	SIMS and HR-XPS characterization of lithiated graphite from the magnetic fusion device RFX-mod. <i>Applied Surface Science</i> , 2021 , 567, 150830	6.7	1
317	Initial Results From the Newly Upgraded LTX-#IEEE Transactions on Plasma Science, 2020, 48, 1382-1387	1.3	5
316	Acetic Acid Adsorption and Reactions on Ni(110). <i>Langmuir</i> , 2020 , 36, 8705-8715	4	3
315	A simple vacuum suitcase for enabling plasma facing component characterization in fusion devices. <i>Review of Scientific Instruments</i> , 2020 , 91, 026104	1.7	3
314	Plasma Facing Component Characterization and Correlation With Plasma Conditions in Lithium Tokamak Experiment-# <i>IEEE Transactions on Plasma Science</i> , 2020 , 48, 1463-1467	1.3	6
313	Effects of non-equilibrium excitation on methane oxidation in a low-temperature RF discharge. Journal Physics D: Applied Physics, 2020 , 53, 064001	3	7
312	Elemental and topographical imaging of microscopic variations in deposition on NSTX-U and DIII-D samples. <i>Nuclear Materials and Energy</i> , 2019 , 18, 35-40	2.1	3
311	Sputtering of lithium and lithium compound films under deuterium and helium ion bombardment. <i>Nuclear Materials and Energy</i> , 2019 , 19, 411-415	2.1	1
310	NSTX/NSTX-U theory, modeling and analysis results. <i>Nuclear Fusion</i> , 2019 , 59, 112007	3.3	10

309	Post exposure time dependence of deuterium retention in lithium and lithium compounds. <i>Nuclear Materials and Energy</i> , 2019 , 19, 161-165	2.1	О
308	Nitrogen-plasma treated hafnium oxyhydroxide as an efficient acid-stable electrocatalyst for hydrogen evolution and oxidation reactions. <i>Nature Communications</i> , 2019 , 10, 1543	17.4	30
307	Balancing Activity and Stability in a Ternary Au-Pd/Fe Electrocatalyst for ORR with High Surface Coverages of Au. <i>ChemCatChem</i> , 2019 , 11, 693-697	5.2	6
306	Deuterium and helium ion irradiation of nanograined tungsten and tungstentitanium alloys. Nuclear Materials and Energy, 2019 , 21, 100713	2.1	7
305	Self-assembling of formic acid on the partially oxidized p(2 11) Cu(110) surface reconstruction at low coverages. <i>Journal of Chemical Physics</i> , 2019 , 150, 041720	3.9	3
304	Formation and thermal stability of subsurface deuterium in Ni(110). Surface Science, 2018, 674, 69-72	1.8	5
303	Hydrogen retention in lithium and lithium oxide films. <i>Journal of Nuclear Materials</i> , 2018 , 502, 161-168	3.3	9
302	Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 810-817	3.4	12
301	Interactions of incident H atoms with metal surfaces. Surface Science Reports, 2018, 73, 153-189	12.9	17
300	Thermal stability of Li films on polycrystalline molybdenum substrates. <i>Journal of Nuclear Materials</i> , 2018 , 509, 532-541	3.3	4
299	Hydrogenation of CO on Ni(110) by Energetic Deuterium. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 14	63. 8-14	677
298	Reversible Structural Evolution of NiCoOxHy during the Oxygen Evolution Reaction and Identification of the Catalytically Active Phase. <i>ACS Catalysis</i> , 2018 , 8, 1238-1247	13.1	107
297	Adsorption and Reaction of Unsaturated Hydrocarbons on Sn/Pt Alloys 2018 , 1-10		2
296	Guaiacol Adsorption and Decomposition on Platinum. Journal of Physical Chemistry C, 2018, 122, 29180	-2,981 89	7
295	Angular, temperature, and impurity effects on secondary electron emission from Ni(110). <i>Journal of Applied Physics</i> , 2018 , 124, 093301	2.5	4
294	Shear-Induced Changes of Electronic Properties in Gallium Nitride. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 29048-29057	9.5	4
293	Electrocatalytic hydrogenation of pyridinium enabled by surface proton transfer reactions. <i>Catalysis Science and Technology</i> , 2017 , 7, 831-837	5.5	14
292	Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment. <i>Physics of Plasmas</i> , 2017 , 24, 056110	2.1	17

291	Minimal architecture zincBromine battery for low cost electrochemical energy storage. <i>Energy and Environmental Science</i> , 2017 , 10, 114-120	35.4	69
290	Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge. <i>Scientific Reports</i> , 2017 , 7, 3075	4.9	32
289	Overview of NSTX Upgrade initial results and modelling highlights. <i>Nuclear Fusion</i> , 2017 , 57, 102006	3.3	37
288	Advances in boronization on NSTX-Upgrade. <i>Nuclear Materials and Energy</i> , 2017 , 12, 744-748	2.1	10
287	Pyrolysis and Oxidation of Methane in a RF Plasma Reactor. <i>Plasma Chemistry and Plasma Processing</i> , 2017 , 37, 1551-1571	3.6	14
286	The promoting effect of tetravalent cerium on the oxygen evolution activity of copper oxide catalysts. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 31545-31552	3.6	23
285	Bynthesis-onland Bynthesis-offlmodes of carbon arc operation during synthesis of carbon nanotubes. <i>Carbon</i> , 2017 , 125, 336-343	10.4	23
284	Unraveling the plasma-material interface with real time diagnosis of dynamic boron conditioning in extreme tokamak plasmas. <i>Nuclear Fusion</i> , 2017 , 57, 086050	3.3	7
283	Initial studies of plasma facing component surface conditioning in the national spherical tokamak experiment upgrade with the materials analysis particle probe. <i>Nuclear Materials and Energy</i> , 2017 , 12, 1248-1252	2.1	10
282	Hydrogenation of CO to Methanol on Ni(110) through Subsurface Hydrogen. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17582-17589	16.4	28
281	Hydrogen retention in lithium on metallic walls from the vacuotanalysis in LTX and implications for high-Z plasma-facing components in NSTX-U. <i>Fusion Engineering and Design</i> , 2017 , 117, 135-139	1.7	14
280	Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 842-850	13	120
279	Composition, structure and stability of surfaces formed by Ni deposition on Pd(111). <i>Surface Science</i> , 2016 , 646, 56-64	1.8	7
278	Reprint of The low temperature oxidation of lithium thin films on HOPG by O2 and H2O\(\textit{IS}\) science, 2016 , 652, 222-229	1.8	1
277	The low temperature oxidation of lithium thin films on HOPG by O2 and H2O. <i>Surface Science</i> , 2016 , 651, 120-127	1.8	2
276	Sorption of atmospheric gases by bulk lithium metal. <i>Journal of Nuclear Materials</i> , 2016 , 468, 71-77	3.3	5
275	Structures and Reactivities of Tin Oxide on Pt(111) Studied by Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS). <i>Topics in Catalysis</i> , 2016 , 59, 497-505	2.3	3
274	Spreading of lithium on a stainless steel surface at room temperature. <i>Journal of Nuclear Materials</i> , 2016 , 468, 26-30	3.3	5

(2014-2016)

273	Glass transition temperature of colloidal polystyrene dispersed in various liquids. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2016 , 54, 1776-1783	2.6	15
272	Secondary electron emission from lithium and lithium compounds. <i>Applied Physics Letters</i> , 2016 , 109, 011605	3.4	8
271	Unraveling wall conditioning effects on plasma facing components in NSTX-U with the Materials Analysis Particle Probe (MAPP). <i>Review of Scientific Instruments</i> , 2016 , 87, 11D403	1.7	8
270	Effect of Temperature on the Desorption of Lithium from Molybdenum(110) Surfaces: Implications for Fusion Reactor First Wall Materials. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 6110-9	3.4	12
269	Observation of Surface-Bound Negatively Charged Hydride and Hydroxide on GaP(110) in H2O Environments. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 17762-17772	3.8	35
268	High performance discharges in the Lithium Tokamak eXperiment with liquid lithium wallsa). <i>Physics of Plasmas</i> , 2015 , 22, 056112	2.1	26
267	Analysis of secondary electron emission for conducting materials using 4-grid LEED/AES optics. <i>Journal Physics D: Applied Physics</i> , 2015 , 48, 195204	3	18
266	An overview of recent physics results from NSTX. <i>Nuclear Fusion</i> , 2015 , 55, 104002	3.3	18
265	Facet-dependent activity and stability of CoDInanocrystals towards the oxygen evolution reaction. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 29387-93	3.6	158
264	The (0001) surfaces of ⊞e2O3 nanocrystals are preferentially activated for water oxidation by Ni doping. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 26797-803	3.6	5
263	Orbital-Resolved Imaging of the Adsorbed State of Pyridine on GaP(110) Identifies Sites Susceptible to Nucleophilic Attack. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 28917-28924	3.8	7
262	Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM. <i>Journal of Nuclear Materials</i> , 2015 , 463, 1177-1180	3.3	22
261	WO3-Fe2O3 composite photoelectrodes with low onset potential for solar water oxidation. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 1327-32	3.6	33
260	Structural origin of anisotropic transport in electrically conducting dichloroacetic acid-treated polymers. <i>Organic Electronics</i> , 2014 , 15, 631-638	3.5	8
259	A new class of electrocatalysts of supporting Pt on an Engel-Brewer alloy substrate: a demonstration for oxidation of ethylene glycol. <i>Chemical Communications</i> , 2014 , 50, 12981-4	5.8	2
258	Hydrogen-bonded cyclic water clusters nucleated on an oxide surface. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13283-8	16.4	25
257	Transport of poly(acrylic acid) coated 2-line ferrihydrite nanoparticles in saturated aquifer sediments for environmental remediation. <i>Journal of Nanoparticle Research</i> , 2014 , 16, 1	2.3	2
256	Titanium incorporation into hematite photoelectrodes: theoretical considerations and experimental observations. <i>Energy and Environmental Science</i> , 2014 , 7, 3100-3121	35.4	105

255	Geometric Requirements for Hydrocarbon Catalytic Sites on Platinum Surfaces. <i>Angewandte Chemie</i> , 2014 , 126, 3715-3718	3.6	2
254	Geometric requirements for hydrocarbon catalytic sites on platinum surfaces. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3641-4	16.4	27
253	Water oxidation catalysis: effects of nickel incorporation on the structural and chemical properties of the FeD(D001) surface. ACS Applied Materials & Interfaces, 2014, 6, 22289-96	9.5	8
252	Ge overlayer and surface alloy structures on Pt(100) studied using alkali ion scattering spectroscopy, x-ray photoelectron spectroscopy and x-ray photoelectron diffraction. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 135002	1.8	2
251	Theoretical Study of Carbon Adsorption on Re Surfaces: Morphological Instability. <i>Catalysis Letters</i> , 2014 , 144, 1667-1673	2.8	1
250	Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	9
249	Highly Stable Pt[email[protected]/C Catalyst Nanoparticles for Methanol Electro-oxidation. Journal of Physical Chemistry C, 2013 , 117, 1457-1467	3.8	32
248	Alloy formation and chemisorption at Cu/Pt(111) bimetallic surfaces using alkali ISS, XPD, and TPD. <i>Surface Science</i> , 2013 , 617, 192-198	1.8	6
247	Iron nanoparticles for environmental clean-up: recent developments and future outlook. <i>Environmental Sciences: Processes and Impacts</i> , 2013 , 15, 63-77	4.3	282
246	Alloy formation and chemisorption at Zn/Pt(111) bimetallic surfaces using alkali ISS, XPD, and TPD. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 11684-94	2.8	8
245	Controlling Acetylene Adsorption and Reactions on PtBn Catalytic Surfaces. ACS Catalysis, 2013, 3, 1149	-131.53	32
244	Plasma facing surface composition during NSTX Li experiments. <i>Journal of Nuclear Materials</i> , 2013 , 438, S647-S650	3.3	36
243	Combining Vibrational Spectroscopies with Quantum Chemical Calculations for Molecular-Level Understanding of Reaction Mechanisms on Catalytic Surfaces. <i>ACS Symposium Series</i> , 2013 , 153-176	0.4	1
242	Electrochemical and spectroscopic study of novel Cu and Fe-based catalysts for bxygen reduction in alkaline media. <i>Journal of Power Sources</i> , 2012 , 213, 169-179	8.9	70
241	Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent iron (nZVI) investigated with In Situ X-ray absorption spectroscopy. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	102
240	As(III) Sequestration by Iron Nanoparticles: Study of Solid-Phase Redox Transformations with X-ray Photoelectron Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 5303-5311	3.8	102
239	Nanofaceted C/Re(1121): fabrication, structure, and template for synthesizing nanostructured model Pt electrocatalyst for hydrogen evolution reaction. <i>ACS Nano</i> , 2012 , 6, 1404-9	16.7	17
238	Activation of Tungsten Carbide Catalysts by Use of an Oxygen Plasma Pretreatment. <i>ACS Catalysis</i> , 2012 , 2, 765-769	13.1	57

237	Role of Surface Iron in Enhanced Activity for the Oxygen Reduction Reaction on a Pd3Fe(111) Single-Crystal Alloy. <i>Angewandte Chemie</i> , 2011 , 123, 10364-10367	3.6	8
236	Role of surface iron in enhanced activity for the oxygen reduction reaction on a Pd3Fe(111) single-crystal alloy. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 10182-5	16.4	31
235	A novel CuFe-based catalyst for the oxygen reduction reaction in alkaline media. <i>Journal of Power Sources</i> , 2011 , 196, 7404-7410	8.9	62
234	Multi-tiered distributions of arsenic in iron nanoparticles: Observation of dual redox functionality enabled by a core-shell structure. <i>Chemical Communications</i> , 2010 , 46, 6995-7	5.8	50
233	Formation of Pd Monomers and Dimers on a Single-Crystal Pd3Fe(111) Surface. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 2493-2497	6.4	5
232	Adsorption and decomposition of cyclohexanone (C6H10O) on Pt(111) and the (2 \square 2) and (B \square B)r30 \square 5n/Pt(111) surface alloys. <i>Langmuir</i> , 2010 , 26, 16401-11	4	12
231	Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 12544-55	3.6	99
230	Studies of Ethylene Oxide Adsorption on PtBn Alloys with TPD, HREELS, UPS, and DFT Calculations Journal of Physical Chemistry C, 2010, 114, 17238-17247	3.8	10
229	Modification of Active Sites on YSZ(111) by Yttria Segregation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 5990-5996	3.8	18
228	Structure, Characterization and Reactivity of PtBn Surface Alloys 2010 , 29-50		
227	Surface Structure of Pd3Fe(111) and Effects of Oxygen Adsorption. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1217, 1		
226	STM and LEED observations of a c(2 12) Ge overlayer on Pt(1 0 0). Surface Science, 2009, 603, 2255-2262	1.8	1
225	Investigation of CO Oxidation Transient Kinetics on an Oxygen Pre-covered Au(211) Stepped Surface. <i>Catalysis Letters</i> , 2009 , 128, 263-267	2.8	11
224	A study of iodine adlayers on polycrystalline gold electrodes by in situ electrochemical Rutherford backscattering (ECRBS). <i>Electrochimica Acta</i> , 2009 , 54, 1777-1783	6.7	6
223	An IRAS study of CO bonding on Sn/Pt(111) surface alloys at maximal pressures of 10Torr. <i>Surface Science</i> , 2009 , 603, 455-461	1.8	7
222	Formation and structure of a (1919)R23.4PGe/Pt(111) surface alloy. Surface Science, 2009, 603, 1161-11	6.7 8	13
221	Site-blocking effects of preadsorbed H on Pt(1 1 1) probed by 1,3-butadiene adsorption and reaction. <i>Surface Science</i> , 2009 , 603, 3355-3360	1.8	8
220	Formation of Ge P t Layer Compound on Pt(100). <i>Journal of Physical Chemistry C</i> , 2009 , 113, 21019-21021	13.8	1

219	Improving electrocatalysts for O(2) reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy. <i>Journal of the American Chemical Society</i> , 2009 , 131, 12755-62	16.4	202
218	Probing Selectivity over PtBn Catalysts in Reactions of n-C6 Hydrocarbons: Adsorption and Reactivity of n-Hexane, 1-Hexene, and 1,5-Hexadiene on Pt(111) and Sn/Pt(111) Surface Alloys. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18152-18162	3.8	9
217	Simultaneous Oxidation and Reduction of Arsenic by Zero-Valent Iron Nanoparticles: Understanding the Significance of the CoreBhell Structure. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14591-14594	3.8	190
216	Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. <i>Langmuir</i> , 2008 , 24, 4329-34	4	184
215	Voxels: volume-enclosing microstructures. <i>Journal of Micromechanics and Microengineering</i> , 2008 , 18, 055025	2	8
214	Real-time scanning tunneling microscopy observations of the oxidation of a TiPt(111)-(212) surface alloy using O2 and NO2a). <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2008 , 26, 1336-1342	2.9	3
213	Promoters and Poisons 2008 , 1593		7
212	Oxidation of Au on vicinal W(110): Role of step edges and facets. <i>Physical Review B</i> , 2007 , 75,	3.3	1
211	Investigation of the thermal stability of 2-D patterns of Au nanoparticles. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 2863-9	1.3	1
210	Oxygen adsorption and oxidation reactions on Au(2 1 1) surfaces: Exposures using O2 at high pressures and ozone (O3) in UHV. <i>Surface Science</i> , 2006 , 600, 4622-4632	1.8	76
209	Catalytic oxidation of HCN over a 0.5% Pt/Al2O3 catalyst. <i>Applied Catalysis B: Environmental</i> , 2006 , 65, 282-290	21.8	53
208	Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cell Stacks. <i>ECS Transactions</i> , 2006 , 1, 293-303	1	9
207	CO adsorption and reaction on clean and oxygen-covered Au(211) surfaces. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 17512-7	3.4	81
206	Fractional Factorial Study of HCN Removal over a 0.5% Pt/Al2O3 Catalyst: Effects of Temperature, Gas Flow Rate, and Reactant Partial Pressure. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 934-939	3.9	16
205	Desorption of chemisorbed Carbon on Mo(1 0 0) by noble gas ion sputtering: Validation of ground test measurements of ion engine lifetimes. <i>Applied Surface Science</i> , 2006 , 252, 2657-2664	6.7	7
204	Influence of coadsorbed hydrogen on ethylene adsorption and reaction on a (radical3 x radical3)R30 degrees-Sn/Pt(111) surface alloy. <i>Langmuir</i> , 2005 , 21, 971-5	4	7
203	Fabrication of polystyrene latex nanostructures by nanomanipulation and thermal processing. <i>Nano Letters</i> , 2005 , 5, 2624-9	11.5	19
202	TPD and FT-IRAS investigation of ethylene oxide (EtO) adsorption on a Au(211) stepped surface. <i>Langmuir</i> , 2005 , 21, 3886-91	4	5

(2004-2005)

201	Hydrogenation of 1,3-butadiene on two ordered Sn/Pt(111) surface alloys. <i>Journal of Catalysis</i> , 2005 , 234, 24-32	7.3	23
200	Reactivity of Ethyl Groups on a Sn/Pt(111) Surface Alloy. <i>Catalysis Letters</i> , 2005 , 99, 27-32	2.8	9
199	Epitaxial growth of tin oxide on Pt(111): Structure and properties of wetting layers and SnO2 crystallites. <i>Physical Review B</i> , 2004 , 69,	3.3	31
198	Suppressed surface alloying for a bulk miscible system: Ge on Pt(100). <i>Physical Review B</i> , 2004 , 69,	3.3	6
197	Probing the chemistry of CH3I on PtBn alloys. Surface Science, 2004, 553, 39-49	1.8	7
196	Silver on Pt(1 0 0)Ecom temperature growth and high temperature alloying. <i>Surface Science</i> , 2004 , 553, 50-60	1.8	19
195	TPD and HREELS reinvestigation of ethylene oxide adsorption on Pt(). Surface Science, 2004, 564, 53-61	1.8	11
194	Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface characterization. <i>Journal of Membrane Science</i> , 2004 , 241, 143-160	9.6	112
193	Thermal stability of ultrathin titanium films on a Pt(111) substrate. Thin Solid Films, 2004, 466, 123-127	2.2	13
192	Desorption energies of linear and cyclic alkanes on surfaces: anomalous scaling with length. <i>Surface Science</i> , 2004 , 554, 125-140	1.8	56
191	Adsorption and reaction of NO2 on a (BB)R30\(\text{S}\)Sn/Pt(1 1 1) surface alloy. Surface Science, 2004 , 560, 235-245	1.8	7
190	Metastable surface structures of the bimetallic Sn/Pt(1 0 0) system. Surface Science, 2004, 558, 35-48	1.8	11
189	Fundamental studies of titanium oxide-Pt(100) interfaces II. Influence of oxidation and reduction reactions on the surface structure of TiOx films on Pt(100). <i>Surface Science</i> , 2004 , 572, 146-161	1.8	30
188	Fundamental studies of titanium oxide P t(1 0 0) interfaces: I. Stable high temperature structures formed by annealing TiOx films on Pt(1 0 0). <i>Surface Science</i> , 2004 , 572, 127-145	1.8	53
187	Adsorption and reaction of 1,3-butadiene on Pt(111) and Sn/Pt(111) surface alloys. <i>Surface Science</i> , 2004 , 572, 261-268	1.8	12
186	Adsorption and reaction of bicyclic hydrocarbons at Pt(111) and Sn/Pt(111) surface alloys: trans-decahydronaphthalene (C10H18) and bicyclohexane (C12H22). <i>Surface Science</i> , 2004 , 573, 413-42.	51.8	5
185	Hydrogenation of cyclohexanone on PtBn surface alloys. <i>Journal of Catalysis</i> , 2004 , 222, 285-292	7.3	21
184	Alloy Formation and CO Adsorption on Bimetallic Ca/Pd(111) Surfaces Journal of Physical Chemistry B, 2004 , 108, 14417-14427	3.4	5

183	Silver on Pt(100): Alloying vs. surface reconstructionEwo competing mechanisms to reduce surface stress. <i>Europhysics Letters</i> , 2003 , 64, 70-76	1.6	14
182	Energy transport in metal nanoparticle plasmon waveguides. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 777, 711		30
181	Adsorption and reaction of acetaldehyde on Pt(111) and Sn/Pt(111) surface alloys. <i>Surface Science</i> , 2003 , 538, 147-159	1.8	76
180	Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. <i>Nature Materials</i> , 2003 , 2, 229-32	27	1960
179	Structural and chemical properties of a c(2᠒)IIi/Pt(100) second-layer alloy: A probe of strong ligand effects on surface Pt atoms. <i>Physical Review B</i> , 2003 , 68,	3.3	10
178	Fe deposition on Pt(): a route to Fe-containing PtBe alloy surfaces. Surface Science, 2002, 513, L391-L39	9 6 1.8	40
177	Hydrogenation of Crotonaldehyde over Sn/Pt(111) Alloy Model Catalysts. <i>Journal of Catalysis</i> , 2002 , 205, 278-288	7.3	50
176	Ultrahigh vacuum instrument that combines variable-temperature scanning tunneling microscopy with Fourier transform infrared reflection-absorption spectroscopy for studies of chemical reactions at surfaces. <i>Review of Scientific Instruments</i> , 2002 , 73, 1267-1272	1.7	11
175	Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 722, 621		1
174	Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit 2002 ,		14
173	Imaging and Manipulation of Gold Nanorods with an Atomic Force Microscope. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 231-234	3.4	74
172	IRAS studies of the orientation of acetone molecules in monolayer and multilayer films on Au(111) surfaces. <i>Surface Science</i> , 2002 , 498, 53-60	1.8	28
171	Probing the reactivity of C6-hydrocarbons on Au surfaces: cyclohexane, cyclohexyl and cyclohexene on Au(). <i>Surface Science</i> , 2002 , 498, 61-73	1.8	21
170	Deposition of silver on the Pt(100)-hex surface: kinetic control of alloy formation and composition by surface reconstruction. <i>Surface Science</i> , 2002 , 498, L85-L90	1.8	9
169	Evidence for slow oxygen exchange between multiple adsorption sites at high oxygen coverages on Pt(111). <i>Surface Science</i> , 2002 , 498, L91-L96	1.8	28
168	Structure of monolayer tin oxide films on Pt(111) formed using NO2 as an efficient oxidant. <i>Physical Review B</i> , 2001 , 64,	3.3	27
167	Self-organized molecular-sized, hexagonally ordered SnOx nanodot superlattices on Pt(111). <i>Applied Physics Letters</i> , 2001 , 78, 2766-2768	3.4	18
166	Tin-oxide overlayer formation by oxidation of PtBn(111) surface alloys. <i>Journal of Vacuum Science</i> and Technology A: Vacuum, Surfaces and Films, 2001 , 19, 1953-1958	2.9	19

(2000-2001)

165	Fabrication of Nanostructures by Hydroxylamine Seeding of Gold Nanoparticle Templates. <i>Langmuir</i> , 2001 , 17, 1713-1718	4	90
164	Adsorption of iodobenzene (C6H5I) on Au(111) surfaces and production of biphenyl (C6H5t6H5). <i>Surface Science</i> , 2001 , 490, 265-273	1.8	42
163	Tuning the chemistry of metal surfaces: I. Adsorption and reaction of NO and N2O on ultrathin Pd films on Ta(110). <i>Surface Science</i> , 2001 , 491, 48-62	1.8	15
162	Tuning the chemistry of metal surfaces: II. Acetylene cyclotrimerization on ultrathin Pd films on Ta(1 1 0). <i>Surface Science</i> , 2001 , 491, 63-76	1.8	5
161	Adsorption and reaction of gaseous H(D) atoms with D(H) adatoms on Pt(1 1 1) and Sn/Pt(1 1 1) surface alloys. <i>Surface Science</i> , 2001 , 490, 133-143	1.8	8
160	Monolayer and multilayer films of nitrobenzene on Au() surfaces: bonding and geometry. <i>Surface Science</i> , 2001 , 495, L827-L833	1.8	16
159	Oxidation of ordered PtBn surface alloys by O2. Surface Science, 2001, 492, 106-114	1.8	39
158	Selectivity of bond-breaking in electron-induced dissociation of hydrocarbon films on Au surfaces. <i>Surface Science</i> , 2001 , 492, L693-L699	1.8	6
157	Coordination and bonding geometry of nitromethane (CH3NO2) on Au() surfaces. <i>Surface Science</i> , 2001 , 494, L741-L747	1.8	10
156	Acetylene Chemisorption on Sn/Pt(100) Alloys. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 3786-3796	3.4	21
155	Immobilizing Au Nanoparticles on SiO2Surfaces Using Octadecylsiloxane Monolayers. <i>Langmuir</i> , 2001 , 17, 5666-5670	4	17
154	Identification of Adsorbed Phenyl (C6H5) Groups on Metal Surfaces: Electron-Induced Dissociation of Benzene on Au(111). <i>Journal of Physical Chemistry B</i> , 2001 , 105, 8387-8394	3.4	119
153	Manipulation of gold nanoparticles in liquid environments using scanning force microscopy. <i>Ultramicroscopy</i> , 2000 , 82, 135-9	3.1	53
152	Coking resistance of PtBn alloys probed by acetylene chemisorption. <i>Catalysis Letters</i> , 2000 , 68, 175-18	02.8	16
151	Electronic contrast in scanning tunneling microscopy of Sn B t(111) surface alloys. <i>Surface Science</i> , 2000 , 466, L821-L826	1.8	42
150	Bi Adsorption and Poisoning on Ni(100) Surface As Probed by CO Chemisorption <i>Journal of Physical Chemistry B</i> , 2000 , 104, 3130-3139	3.4	6
149	Influence of Alloyed Sn on Adsorption and Reaction of NO on Pt(100) Surfaces. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 2486-2497	2.8	16
148	Scanning Force Microscopy Study of Etch Pits Formed during Dissolution of a Barite (001) Surface in CDTA and EDTA Solutions. <i>Langmuir</i> , 2000 , 16, 649-655	4	17

147	Electrical properties of K-doped superfulleride thin films. Journal of Applied Physics, 1999, 85, 3696-370	00 2.5	3
146	Reaction of C60 with oxygen adatoms on Pt(111). Journal of Chemical Physics, 1999, 110, 1173-1179	3.9	9
145	Polymerization and decomposition of C60 on Pt(111) surfaces. <i>Physical Review B</i> , 1999 , 59, 8283-8291	3.3	37
144	Control of the growth of ordered C 60 films by chemical modification of Pt(111) surfaces. <i>Thin Solid Films</i> , 1999 , 348, 30-37	2.2	17
143	Dissolution of the barite (001) surface by the chelating agent DTPA as studied with non-contact atomic force microscopy. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 160, 217-227	5.1	30
142	Study of the Dissolution of the Barium Sulfate (001) Surface with Hydrochloric Acid by Atomic Force Microscopy. <i>Journal of Colloid and Interface Science</i> , 1999 , 219, 212-215	9.3	14
141	Ordering and stabilization of C 60 films on the (3B)R30°LSn/Pt(111) surface alloy. <i>Surface Science</i> , 1999 , 425, 141-151	1.8	2
140	Oxidation of Pt(111) by ozone (O3) under UHV conditions. <i>Surface Science</i> , 1999 , 419, 79-88	1.8	89
139	Reactions of N2O4 with ice at low temperatures on the Au(111) surface. Surface Science, 1999 , 436, 15-	28 .8	47
138	Linking and Manipulation of Gold Multinanoparticle Structures Using Dithiols and Scanning Force Microscopy. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 3647-3650	3.4	44
137	Oxidation of Ordered Sn/Pt(111) Surface Alloys and Thermal Stability of the Oxides Formed. Journal of Physical Chemistry B, 1999 , 103, 1532-1541	3.4	23
136	Manipulation of nanoparticles using dynamic force microscopy: simulation and experiments. <i>Applied Physics A: Materials Science and Processing</i> , 1998 , 67, 265-271	2.6	53
135	Thermochemistry of the selective dehydrogenation of cyclohexane to benzene on Pt surfaces. Journal of Molecular Catalysis A, 1998 , 131, 39-53		66
134	Adsorption of methanol, ethanol and water on well-characterized Pt?Sn surface alloys. <i>Surface Science</i> , 1998 , 395, 248-259	1.8	84
133	TPD study of the adsorption and reaction of nitromethane and methyl nitrite on ordered PtBn surface alloys. <i>Surface Science</i> , 1998 , 410, 170-188	1.8	19
132	A temperature programmed desorption study of the reaction of methylacetylene on Pt(111) and Sn/Pt(111) surface alloys. <i>Surface Science</i> , 1998 , 410, 200-213	1.8	23
131	TPD, HREELS and UPS study of the adsorption and reaction of methyl nitrite (CH3ONO) on Pt(111). <i>Surface Science</i> , 1998 , 410, 214-227	1.8	25
130	Adsorption of oxygen on Au(111) by exposure to ozone. Surface Science, 1998 , 410, 270-282	1.8	29 0

129	Adsorption of thermal D atoms on Sn/Pt(111) surface alloys. Surface Science, 1998, 414, 330-340	1.8	21
128	Building and Manipulating Three-Dimensional and Linked Two-Dimensional Structures of Nanoparticles Using Scanning Force Microscopy. <i>Langmuir</i> , 1998 , 14, 6613-6616	4	77
127	Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring. <i>Nanotechnology</i> , 1998 , 9, 360-364	3.4	113
126	Methyl Nitrite Adsorption as a Novel Route to the Surface Methoxy Intermediate. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 3321-3323	3.4	9
125	Chemisorbed Oxygen on Au(111) Produced by a Novel Route: Reaction in Condensed Films of NO2 + H2O. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 4693-4696	3.4	50
124	IRAS Studies of NO2, N2O3, and N2O4 Adsorbed on Au(111) Surfaces and Reactions with Coadsorbed H2O. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 8573-8579	2.8	84
123	Reactivity of Pt and PtBn Alloy Surfaces Probed by Activation of C5f28 Cycloalkanes via Electron-Induced Dissociation (EID) of Multilayers. <i>Langmuir</i> , 1998 , 14, 1290-1300	4	11
122	Nitromethane and Methyl Nitrite Adsorption on Au(111) Surfaces. <i>Langmuir</i> , 1998 , 14, 3255-3263	4	15
121	Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope. <i>Nanotechnology</i> , 1998 , 9, 237-245	3.4	72
120	Deuterium dissociation on ordered Sn/Pt(111) surface alloys. <i>Journal of Chemical Physics</i> , 1998 , 109, 32	5 <u>5</u> .∂2€	5459
119	Growth and characterization of potassium-doped superfulleride thin films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1998 , 16, 2395-2399	2.9	5
118	Imaging and direct manipulation of nanoscale three-dimensional features using the noncontact atomic force microscope. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1998 , 16, 1425-1429	2.9	7
117	Probing the Influence of Alloyed Sn on Pt(100) Surface Chemistry by CO Chemisorption. <i>Israel Journal of Chemistry</i> , 1998 , 38, 365-374	3.4	7
116	Robotic nanomanipulation with a scanning probe microscope in a networked computing environment. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1997 , 15, 1577		46
115	Probing the structures of bimetallic Sn/Rh(111) surfaces: Alkali-ion scattering and x-ray photoelectron diffraction studies. <i>Physical Review B</i> , 1997 , 56, 15982-15994	3.3	31
114	Temperature-Programmed Desorption Investigation of the Adsorption and Reaction of Butene Isomers on Pt(111) and Ordered PtBn Surface Alloys. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 2895-29	9 6 6	41
113	Importance of Hydrocarbon Fragment Diffusion in the Formation of Adsorbed Alkyls via EID of Multilayers on Pt(111). <i>Journal of Physical Chemistry B</i> , 1997 , 101, 4781-4786	3.4	12
112	Chemisorption of ethylene, propylene and isobutylene on ordered Sn/Pt(111) surface alloys. <i>Surface Science</i> , 1997 , 385, 37-59	1.8	85

111	Adsorption and reaction of nitromethane (CH3NO2) on Pt(111). Surface Science, 1997, 389, 147-161	1.8	15
110	Selective Dehydrogenation of 1,3-Cyclohexadiene on Ordered Sn/Pt(111) Surface Alloys. <i>Journal of the American Chemical Society</i> , 1996 , 118, 2708-2717	16.4	46
109	Adsorption and reaction of CH3COOH and CD3COOD on the MgO(100) surface: A Fourier transform infrared and temperature programmed desorption study. <i>Journal of Chemical Physics</i> , 1995 , 102, 8158-8166	3.9	52
108	Dehydrogenation of Methylcyclohexane on Pt(111). <i>The Journal of Physical Chemistry</i> , 1995 , 99, 16670-7	16675	22
107	Influence of alloyed Sn atoms on the chemisorption properties of Ni(111) as probed by RAIRS and TPD studies of CO adsorption. <i>Surface Science</i> , 1995 , 327, 38-46	1.8	42
106	Structural studies of surfaces: conditions for alloy formation. <i>Surface Science</i> , 1995 , 330, 193-206	1.8	33
105	Adsorption of cyclohexane and benzene on ordered tin/platinum (111) surface alloys. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 585-593		96
104	Charge transfer from potassium into the t1g band of C60. <i>Physical Review Letters</i> , 1994 , 72, 140-143	7.4	39
103	Adsorption kinetics on chemically modified or bimetallic surfaces. <i>Journal of Chemical Physics</i> , 1994 , 100, 664-670	3.9	22
102	Surface alloy formation and the structure of c(2 x 2)-Sn/Ni(100) determined by low-energy alkali-ion scattering. <i>Physical Review B</i> , 1994 , 49, 2813-2820	3.3	41
101	Electronic and CO chemisorption properties of ultrathin Pd films vapor deposited on Au(111). <i>Physical Review B</i> , 1994 , 49, 8367-8376	3.3	49
100	Superfulleride formation and electronic properties of C60 on K/Rh(111) surfaces. <i>Chemical Physics Letters</i> , 1994 , 223, 69-75	2.5	29
99	Probing the modifier precursor state: adsorption of CO on Sn/Pt(111) surface alloys. <i>Surface Science</i> , 1994 , 304, L505-L511	1.8	32
98	Dehydrogenation of cyclohexene on ordered Sn/Pt(111) surface alloys. Surface Science, 1994 , 304, 249-3	26.6	62
97	A LEED, TPD and HREELS investigation of NO adsorption on Sn/Pt(111) surface alloys. <i>Surface Science</i> , 1994 , 310, 198-208	1.8	39
96	Adsorption and desorption behavior of n-butane and isobutane on Pt(111) and Sn/Pt(111) surface alloys. <i>Langmuir</i> , 1994 , 10, 166-171	4	58
95	Hydrogen adsorption and absorption on ultrathin Pd films on Ta(110). Surface Science, 1993, 294, 251-2	64 8	13
94	Electron-induced dissociation of hydrocarbon multilayers. <i>Surface Science</i> , 1993 , 292, L803-L809	1.8	54

93	CO chemisorption properrties of ultrathin Pd films on Ta(110). Surface Science, 1993, 284, 139-153	1.8	22
92	Growth mechanism and structure of ultrathin Pd films vapor-deposited on Ta(110). <i>Surface Science</i> , 1993 , 281, 223-233	1.8	14
91	Trajectory-dependent neutralization of low energy Li+ scattered from alkali adsorbates on Ni(111). <i>Physical Review Letters</i> , 1993 , 70, 2649-2652	7.4	45
90	Methylcyclohexane-to-benzene conversion over potassium-promoted platinum(111). <i>Journal of the American Chemical Society</i> , 1993 , 115, 12106-12110	16.4	10
89	A new catalysis for benzene production from acetylene under ultrahigh-vacuum conditions: tin/platinum(111) surface alloys. <i>Journal of the American Chemical Society</i> , 1993 , 115, 751-755	16.4	72
88	Vibrational and electronic properties of monolayer and multilayer fullerene C60 films on rhodium (111). <i>The Journal of Physical Chemistry</i> , 1993 , 97, 10076-10082		50
87	Chemisorption of ethylene and acetylene on ultrathin palladium films on molybdenum(100). <i>The Journal of Physical Chemistry</i> , 1993 , 97, 5327-5332		30
86	Interaction of Cl2 with the Au(111) surface in the temperature range of 120 to 1000 K. <i>Applied Surface Science</i> , 1993 , 64, 235-249	6.7	62
85	Electron-induced dissociation of hydrocarbon multilayers. Surface Science Letters, 1993, 292, L803-L809		2
84	Reactivity of Oxygen Adatoms on the Au(111) Surface. ACS Symposium Series, 1993, 90-109	0.4	49
83	Influence of potassium on the adsorption of hydrogen on platinum(III). <i>The Journal of Physical Chemistry</i> , 1992 , 96, 7056-7063		27
82	Hydrocarbon trapping and condensation on platinum (111). <i>The Journal of Physical Chemistry</i> , 1992 , 96, 8694-8697		19
81	Ultrathin films of Pd on Au(111): Evidence for surface alloy formation. <i>Physical Review B</i> , 1992 , 46, 7846	-3.856	117
80	Growth mechanism and structure of ultrathin palladium films formed by deposition on Mo(100). <i>Surface Science</i> , 1992 , 260, 151-162	1.8	13
79	Effects of K, O, and H adatoms on the adsorption kinetics of CO on Pt(111). <i>Surface Science</i> , 1992 , 273, 273-284	1.8	31
78	Chemisorption of CO on ultrathin films of Pd on Mo(100). Surface Science, 1992, 275, 209-222	1.8	37
77	Low energy electron induced chemistry: CH3Cl on Ag(111). Surface Science, 1992, 271, 427-451	1.8	20

75 Chemisorption of hydrogen on ultrathin Pd films on Mo (100). *Chemical Physics Letters*, **1992**, 200, 65-70 2.5 10

74	HREELS 1992 , 442-459		
73	Methyl chloride and trichlorosilane adsorption on Cu(110). Surface Science, 1991, 248, 93-103	1.8	16
72	Spectroscopic evidence for carbon-carbon bonding in Barbidic layers on metals. <i>Surface Science</i> , 1991 , 248, 104-118	1.8	25
71	Interpretation of the carbon Auger line shapes for the adsorption and decomposition of ethylene on Ni(100). <i>Surface Science</i> , 1991 , 248, 119-133	1.8	18
70	Adsorption of nitrogen dioxide and nitric oxide on Pd(lll). Surface Science, 1991 , 243, 83-95	1.8	113
69	A vibrational study of borazine adsorbed on Pt(111) and Au(111) surfaces. <i>Surface Science</i> , 1991 , 254, 29-44	1.8	24
68	Surface structure determination of Sn deposited on Pt(111) by low energy alkali ion scattering. <i>Surface Science</i> , 1991 , 254, 45-57	1.8	122
67	A multitechnique surface science examination of Sn deposition on Pt(100). <i>Surface Science</i> , 1991 , 250, 123-138	1.8	26
66	Hydrogen-induced CO displacement from the Pt(111) surface: an isothermal kinetic study. <i>Surface Science</i> , 1991 , 258, 75-81	1.8	29
65	Coadsorption of ethylene and potassium on platinum(111). 2. Influence of potassium on the decomposition of ethylene. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 1489-1496		33
64	Adsorption of nitrogen dioxide on polycrystalline gold. <i>Catalysis Letters</i> , 1990 , 6, 163-172	2.8	33
63	Interaction of dimethylamine with clean and partially oxidized copper surfaces. <i>Applied Surface Science</i> , 1990 , 44, 193-204	6.7	9
62	Chemisorption of high coverages of atomic oxygen on the Pt(111), Pd(111), and Au(111) surfaces. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1990 , 8, 2585-2590	2.9	112
61	A Comprehensive Investigation of HCl - and Br2 / NH 3 (aq) - Etched p - InP Interfaces. <i>Journal of the Electrochemical Society</i> , 1990 , 137, 544-552	3.9	13
60	Chemisorption of carbon monoxide, hydrogen, and oxygen on ordered tin/platinum(111) surface alloys. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 6831-6839		145
59	Temperature programmed desorption of Bi on Ni(100). <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1990 , 8, 2512-2516	2.9	9
58	Interaction of oxygen with Pd(111): High effective O2 pressure conditions by using nitrogen dioxide. <i>Surface Science</i> , 1990 , 232, 275-285	1.8	126

57	Determination of the reaction order and activation energy for desorption kinetics using TPD spectra: Application to D2 desorption from Ag(111). <i>Surface Science</i> , 1990 , 233, 65-73	1.8	94
56	The adsorption of CO on Pd thin films on Ta(110). Surface Science, 1990, 231, 325-332	1.8	67
55	Hydrogen-induced low temperature CO displacement from the Pt(111) surface. <i>Surface Science</i> , 1990 , 236, L372-L376	1.8	23
54	A method for estimating surface reaction energetics: Application to the mechanism of ethylene decomposition on Pt(111). <i>Surface Science</i> , 1990 , 226, 339-357	1.8	83
53	Direct formation of chlorodimethylsilane from silicon and chloroform. <i>The Journal of Physical Chemistry</i> , 1989 , 93, 5563-5568		7
52	Small-scale electrochemical cleaning of molybdenum to improve spotwelding characteristics. <i>Review of Scientific Instruments</i> , 1989 , 60, 3067-3068	1.7	4
51	Transient kinetic studies of the catalytic reduction of NO by CO on platinum. <i>Journal of Catalysis</i> , 1989 , 119, 238-248	7.3	32
50	A multitechnique surface analysis study of the adsorption of H2, CO and O2 on surfaces. <i>Surface Science</i> , 1989 , 207, 274-296	1.8	27
49	The molecular adsorption of NO2 and the formation of N2O3 on Au(111). <i>Surface Science</i> , 1989 , 213, 137-156	1.8	110
48	Study of high coverages of atomic oxygen on the Pt(111) surface. Surface Science, 1989 , 217, 489-510	1.8	253
47	Electronic effects of surface oxygen on the bonding of NO to Pt(111). Surface Science, 1989, 219, 467-4	89 .8	80
46	Chemisorption of atomic hydrogen on clean and Cl-covered Ag(111). Surface Science, 1989, 218, 201-21	0 1.8	97
45	Chemisorption of ethylene on ordered Sn/Pt(111) surface alloys. Surface Science, 1989, 223, 449-464	1.8	77
44	The adsorption of nitric oxide and nitrogen dioxide on polycrystalline platinum. <i>Surface Science</i> , 1989 , 223, 82-100	1.8	24
43	Steady-state kinetics of the catalytic reduction of nitrogen dioxide by carbon monoxide on platinum. <i>Journal of Catalysis</i> , 1988 , 114, 207-216	7.3	13
42	Coadsorption of nitrogen dioxide and oxygen on platinum(111). <i>Langmuir</i> , 1988 , 4, 240-246	4	54
41	Studies of the ensemble size requirements for ethylene adsorption and decomposition on platinum(111): ethylene and bismuth coadsorption. <i>Langmuir</i> , 1988 , 4, 1113-1118	4	26
40	Summary Abstract: NO2 chemisorption: An example of surface linkage isomerism. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1988 , 6, 782-784	2.9	3

39	Coadsorption of ethylene and potassium on platinum (111). 1. Formation of a .pibonded state of ethylene. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 2862-2870		124
38	Summary Abstract: The influence of potassium on ethylene adsorption and decomposition on Pt(111). <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1987 , 5, 457-458	2.9	8
37	Surface science studies of the watergas shift reaction on a model Cu(111) catalyst. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1987 , 5, 810-813	2.9	25
36	Bonding and thermal decomposition of propylene, propadiene, and methylacetylene on the rhodium(111) single-crystal surface. <i>The Journal of Physical Chemistry</i> , 1987 , 91, 1493-1502		67
35	The molecular adsorption of nitrogen dioxide on Pt(111) studied by temperature programmed desorption and vibrational spectroscopy. <i>Surface Science</i> , 1987 , 184, 57-74	1.8	108
34	H2S/Cu(111): A model study of sulfur poisoning of water-gas shift catalysts. <i>Surface Science</i> , 1987 , 183, 100-112	1.8	106
33	A model study of alkali promotion of water-gas shift catalysts: Cs/Cu(111). <i>Surface Science</i> , 1987 , 186, 393-411	1.8	38
32	Surface Chemistry of Thin Palladium Films. <i>Materials Research Society Symposia Proceedings</i> , 1986 , 83, 143		
31	Auger lineshape determination of the hybridization of ethylene adsorbed on Ni(100). <i>Chemical Physics Letters</i> , 1986 , 130, 164-169	2.5	6
30	Thermal decomposition of benzene on the rhodium(111) crystal surface. <i>The Journal of Physical Chemistry</i> , 1986 , 90, 2949-2956		84
29	Chlorine promotion of selective ethylene oxidation over Ag(110): Kinetics and mechanism. <i>Journal of Catalysis</i> , 1985 , 92, 272-283	7.3	91
28	Surface Structural Chemistry 1985 , 159-218		4
27	Hydrogenation and H, D Exchange studies of ethylidyne (CCH3) on Rh(111) crystal surfaces at 1 atm pressure using high resolution electron energy loss spectroscopy. <i>Surface Science</i> , 1984 , 146, 211-228	1.8	112
26	A high-resolution electron energy loss spectroscopy study of the surface structure of benzene adsorbed on the rhodium(111) crystal face. <i>The Journal of Physical Chemistry</i> , 1984 , 88, 1988-1996		121
25	Vibrational spectroscopy using HREELS of benzene adsorbed on the Rh(111) crystal surface. Journal of Electron Spectroscopy and Related Phenomena, 1983 , 29, 287-292	1.7	24
24	LEED and HREELS studies of benzene adsorbed on Rh(111). Vacuum, 1983, 33, 860-861	3.7	4
23	Low temperature coadsorption of hydrogen and carbon monoxide on Ni(100). <i>Surface Science</i> , 1983 , 125, 739-761	1.8	63
22	Low temperature coadsorption of hydrogen and carbon monoxide on Ni(100). <i>Surface Science</i> , 1983 , 125, 709-738	1.8	139

21	Photon- and electron-stimulated desorption from rare earth oxides. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1983 , 1, 1145-1148	2.9	4
20	Vibrational Spectroscopy Using HREELS of Benzene Adsorbed on the Rh(111) Crystal Surface. <i>Studies in Surface Science and Catalysis</i> , 1983 , 14, 287-292	1.8	
19	Hydrogen surface segregation on Si(111) by photon-stimulated desorption at the Si K edge. <i>Physical Review B</i> , 1982 , 26, 2292-2295	3.3	25
18	C(KVV) Auger line shape of chemisorbed CO. <i>Journal of Chemical Physics</i> , 1982 , 77, 2665-2669	3.9	27
17	Resonant photon-stimulated desorption of ions from oxidized cerium. <i>Physical Review B</i> , 1982 , 25, 5551	-\$\$54	31
16	Summary Abstract: An electronic spectroscopic study of coadsorbed H2 and CO on Ni(100). <i>Journal of Vacuum Science and Technology</i> , 1982 , 20, 889-890		4
15	Water-induced effects on CO adsorption on Ru(001)*1. <i>Journal of Catalysis</i> , 1982 , 74, 192-195	7.3	10
14	The adsorption and decomposition of ethylene on Ni(100). <i>Chemical Physics Letters</i> , 1982 , 88, 236-242	2.5	32
13	The interaction of coadsorbed hydrogen and carbon monoxide on Ni(100). <i>Surface Science</i> , 1981 , 107, L367-L373	1.8	53
12	Interference of O Kthost features in X-ray-excited Auger spectra. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1981 , 22, 237-245	1.7	14
11	X-Ray photoelectron study of the reaction of oxygen with cerium. <i>Journal of Electron Spectroscopy</i> and Related Phenomena, 1980 , 21, 17-30	1.7	237
10	X-Ray photoelectron study of the reaction of water with cerium. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1980 , 21, 31-46	1.7	47
9	Incorporation of oxygen chemisorbed on Ru(001). <i>Applications of Surface Science</i> , 1980 , 5, 296-312		29
8	Oxygen chemisorption on a stepped Ru (~001) crystal. <i>Journal of Chemical Physics</i> , 1979 , 71, 3352-3354	3.9	43
7	Nanorobotic assembly of two-dimensional structures		33
6	3.8.4 CO2, NO2, SO2, OCS, N2O, O3 on metal surfaces1-72		
5	Layered nanoassembly of three-dimensional structures		8
4	Manipulation of nanoscale components with the AFM: principles and applications		19

3 Towards hierarchical nano	assembly
-----------------------------	----------

2	In Situ Identification of NNH and N2H2 by Using Molecular-Beam Mass Spectrometry in Plasma-Assisted Catalysis for NH3 Synthesis. <i>ACS Energy Letters</i> ,53-58	20.1	6
1	Pollutants transformation by metal nanoparticles in confined nanospaces. <i>Environmental Science:</i> Nano,	7.1	