
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2409916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ray-tracking methods for characterizing the dynamics of curved detonation. Physics of Fluids, 2022, 34, .	1.6	3
2	Fourier and wavelet transform analysis of wavelength modulation spectroscopy signal. Applied Physics B: Lasers and Optics, 2022, 128, .	1,1	2
3	Combustion of silane-nitrous oxide-argon mixtures: Analysis of laminar flame propagation and condensed products. Proceedings of the Combustion Institute, 2021, 38, 2235-2245.	2.4	7
4	Current status of the high-temperature kinetic models of silane: Part II. Oxidation. Combustion and Flame, 2021, 227, 538-549.	2.8	5
5	Current status of the high-temperature kinetic models of silane: Part I. Pyrolysis. Combustion and Flame, 2021, 227, 526-537.	2.8	10
6	A chemically consistent rate constant for the reaction of nitrogen dioxide with the oxygen atom. Physical Chemistry Chemical Physics, 2021, 23, 585-596.	1.3	3
7	Effect of the reactor model on steady detonation modeling. Shock Waves, 2021, 31, 323-335.	1.0	11
8	On the self-similarity of diffracting gaseous detonations and the critical channel width problem. Physics of Fluids, 2021, 33, .	1.6	14
9	Unsteady propagation of detonation with multi-stage heat release. Fuel, 2021, 296, 120666.	3.4	9
10	Effect of the excitation line on hydroxyl radical imaging by laser induced fluorescence in hydrogen detonations. Combustion and Flame, 2021, 229, 111399.	2.8	12
11	expanding frames: Application to H <mml:math si1.svg"="" xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math
altimg="><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub></mml:math> /O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow< td=""><td>2.8</td><td>10</td></mml:mrow<></mml:msub></mml:math 	2.8	10
12	Direct detonation initiation: A comparison between the critical curvature and critical decay rate models. Physics of Fluids, 2021, 33, .	1.6	5
13	Shock wave refraction patterns at a slow–fast gas–gas interface at superknock relevant conditions. Physics of Fluids, 2021, 33, 116101.	1.6	1
14	Modeling of spontaneous Raman scattering for detonation wave imaging. Physics of Fluids, 2021, 33, 126115.	1.6	1
15	Spherically expanding flame in silane–hydrogen–nitrous oxide–argon mixtures. Combustion and Flame, 2020, 221, 150-159.	2.8	13
16	Effect of incident laser sheet orientation on the OH-PLIF imaging of detonations. Shock Waves, 2020, 30, 689-702.	1.0	12
17	Effect of hydroxyl radical precursor addition on LTC-affected detonation in DME–\$\$hbox {O}_{{2}}\$\$a€"\$\$hbox {CO}_{{2}}\$\$ mixtures. Shock Waves, 2020, 30, 789-798.	1.0	7
18	Effect of 2-step energy release on direct detonation initiation by a point energy source in a rich H2–NO2/N2O4 mixture. Combustion and Flame, 2020, 222, 317-325.	2.8	10

#	Article	IF	CITATIONS
19	Effect of volumetric expansion on shock-induced ignition of H2–NO2/N2O4 mixtures. Combustion and Flame, 2020, 215, 425-436.	2.8	9
20	Correction of reaction models using collision limit violation analyses: Application to a silane reaction model. Combustion and Flame, 2020, 217, 346-359.	2.8	13
21	Effect of oxygen atom precursors addition on LTC-affected detonation in \$\${hbox {DME}}{-}{hbox {O}}_{2}{-}{hbox {CO}}_{2}\$ mixtures. Shock Waves, 2020, 30, 799-807.	1.0	12
22	Optical regime diagram of the shock tube/pulsed laser-induced fluorescence imaging technique. Chemical Physics Letters, 2019, 730, 283-288.	1.2	5
23	Numerical study of the transition between slow reaction and ignition in a cylindrical vessel. Combustion and Flame, 2019, 204, 116-136.	2.8	5
24	lgnition characteristics of dual-fuel methane-n-hexane-oxygen-diluent mixtures in a rapid compression machine and a shock tube. Fuel, 2019, 249, 379-391.	3.4	18
25	Experimental and numerical study of the ignition of hydrogen-air mixtures by a localized stationary hot surface. International Journal of Heat and Fluid Flow, 2019, 76, 154-169.	1.1	17
26	Oxidation of n-hexane in the vicinity of the auto-ignition temperature. Fuel, 2019, 236, 373-381.	3.4	7
27	Ignition of hydrogen-air mixtures under volumetric expansion. Proceedings of the Combustion Institute, 2019, 37, 3503-3511.	2.4	8
28	An updated reaction model for the high-temperature pyrolysis and oxidation of acetaldehyde. Fuel, 2018, 217, 226-239.	3.4	19
29	Role of low-temperature chemistry in detonation of n-heptane/oxygen/diluent mixtures. Combustion and Flame, 2018, 193, 463-470.	2.8	23
30	Experimental and numerical study on moving hot particle ignition. Combustion and Flame, 2018, 192, 495-506.	2.8	27
31	Shock wave and flame front induced detonation in a rapid compression machine. Shock Waves, 2018, 28, 1109-1116.	1.0	9
32	Structure of detonation propagating in lean and rich dimethyl ether–oxygen mixtures. Shock Waves, 2018, 28, 955-966.	1.0	22
33	Dynamics of ignition of stoichiometric hydrogen-air mixtures by moving heated particles. International Journal of Hydrogen Energy, 2017, 42, 7380-7392.	3.8	19
34	Effects of differential diffusion on ignition of stoichiometric hydrogen-air by moving hot spheres. Proceedings of the Combustion Institute, 2017, 36, 1155-1163.	2.4	18
35	Hot surface ignition of stoichiometric hydrogen-air mixtures. International Journal of Hydrogen Energy, 2017, 42, 7393-7403.	3.8	31
36	Models for shock-induced ignition evaluated by detailed chemical kinetics for hydrogen/air in the context of deflagration-to-detonation transition. Journal of Loss Prevention in the Process Industries, 2017, 49, 731-738.	1.7	5

#	Article	IF	CITATIONS
37	Ignition of fuel–air mixtures from a hot circular cylinder. Combustion and Flame, 2017, 185, 265-277.	2.8	17
38	Detonation wave diffraction in H2–O2–Ar mixtures. Proceedings of the Combustion Institute, 2017, 36, 2781-2789.	2.4	40
39	Chemical Kinetics of n-Hexane-Air Atmospheres in the Boundary Layer of a Moving Hot Sphere. Combustion Science and Technology, 2016, 188, 2267-2283.	1.2	7
40	Hot Surface Ignition of <i>n</i> -Hexane Mixtures Using Simplified Kinetics. Combustion Science and Technology, 2016, 188, 2060-2076.	1.2	14
41	Fundamental combustion properties of oxygen enriched hydrogen/air mixtures relevant to safety analysis: Experimental and simulation study. International Journal of Hydrogen Energy, 2016, 41, 6905-6916.	3.8	19
42	High-speed OH-PLIF imaging of deflagration-to-detonation transition in H2–air mixtures. Experiments in Fluids, 2016, 57, 1.	1.1	8
43	Detonation in hydrogen–nitrous oxide–diluent mixtures: An experimental and numerical study. Combustion and Flame, 2015, 162, 1638-1649.	2.8	40
44	Modeling of Rayleigh scattering imaging of detonation waves: Quantum computation of Rayleigh cross-sections and real diagnostic effects. Combustion and Flame, 2015, 162, 2191-2199.	2.8	6
45	lgnition delay-time behind reflected shock waves of small hydrocarbons–nitrous oxide(–oxygen) mixtures. Shock Waves, 2015, 25, 217-229.	1.0	42
46	Ignition and chemical kinetics of acrolein–oxygen–argon mixtures behind reflected shock waves. Fuel, 2014, 135, 498-508.	3.4	24
47	Application of a laser induced fluorescence model to the numerical simulation of detonation waves in hydrogen–oxygen–diluent mixtures. International Journal of Hydrogen Energy, 2014, 39, 6044-6060.	3.8	34
48	Low temperature oxidation of n-hexane in a flow reactor. Fuel, 2014, 126, 282-293.	3.4	25
49	Experimental study of minimum ignition energy of lean H2-N2O mixtures. Proceedings of the Combustion Institute, 2013, 34, 895-902.	2.4	29
50	Measurement of the absorption cross sections of SiCl4, SiCl3, SiCl2 and Cl at H Lyman- wavelength. Chemical Physics Letters, 2013, 561-562, 31-35.	1.2	3
51	Dynamics of excited hydroxyl radicals in hydrogen-based mixtures behind reflected shock waves. Proceedings of the Combustion Institute, 2013, 34, 677-684.	2.4	23
52	The effect of heating rates on low temperature hexane air combustion. Fuel, 2012, 96, 392-403.	3.4	25
53	Assessment of H2-CH4-air mixtures oxidation kinetic models used in combustion. International Journal of Hydrogen Energy, 2012, 37, 698-714.	3.8	13
54	Absorption cross section at 3.391¼m of alkanes, aromatics and substituted hydrocarbons. Chemical Physics Letters, 2012, 531, 22-27.	1.2	31

#	Article	IF	CITATIONS
55	Flame burning speeds and combustion characteristics of undiluted and nitrogen-diluted hydrogen–nitrous oxide mixtures. International Journal of Hydrogen Energy, 2011, 36, 10107-10116.	3.8	49
56	Numerical study of the detonation structure in rich H2â^'NO2/N2O4 and very lean H2â^'N2O mixtures. Shock Waves, 2011, 21, 85-99.	1.0	28
57	A chemical kinetic study of the oxidation of silane by nitrous oxide, nitric oxide and oxygen. Proceedings of the Combustion Institute, 2011, 33, 485-492.	2.4	38
58	Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures. International Journal of Hydrogen Energy, 2011, 36, 5707-5716.	3.8	70
59	Elementary kinetics for gas phase combustion of SiCl4 based mixtures. Proceedings of the Combustion Institute, 2011, 33, 477-484.	2.4	7
60	Oxygen atom kinetics in silane–hydrogen–nitrous oxide mixtures behind reflected shock waves. Chemical Physics Letters, 2010, 500, 223-228.	1.2	17
61	A study of N ₂ O decomposition rate constant at high temperature: Application to the reduction of nitrous oxide by hydrogen. International Journal of Chemical Kinetics, 2009, 41, 357-375.	1.0	48
62	Spherical expanding flames in H2–N2O–Ar mixtures: flame speed measurements and kinetic modeling. International Journal of Hydrogen Energy, 2009, 34, 9007-9018.	3.8	52
63	Hydrogen–nitrous oxide delay times: Shock tube experimental study and kinetic modelling. Proceedings of the Combustion Institute, 2009, 32, 359-366.	2.4	112
64	Induction Delay Times and Detonation Cell Size Prediction of Hydrogen-Nitrous Oxide-Diluent Mixtures. Combustion Science and Technology, 2008, 180, 1858-1875.	1.2	35