
Marcin Palusiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2409785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aromaticity from the Viewpoint of Molecular Geometry: Application to Planar Systems. Chemical Reviews, 2014, 114, 6383-6422.	47.7	439
2	Application of AIM Parameters at Ring Critical Points for Estimation of Ï€â€Electron Delocalization in Sixâ€Membered Aromatic and Quasiâ€Aromatic Rings. Chemistry - A European Journal, 2007, 13, 7996-8006.	3.3	159
3	On the nature of halogen bond – The Kohn–Sham molecular orbital approach. Computational and Theoretical Chemistry, 2010, 945, 89-92.	1.5	122
4	Interplay between Intramolecular Resonance-Assisted Hydrogen Bonding and Aromaticity in o-Hydroxyaryl Aldehydes. Journal of Organic Chemistry, 2006, 71, 5241-5248.	3.2	110
5	Electron Density Characteristics in Bond Critical Point (QTAIM) versus Interaction Energy Components (SAPT): The Case of Charge-Assisted Hydrogen Bonding. Journal of Physical Chemistry A, 2012, 116, 452-459.	2.5	109
6	Nature of a Hydride–Halogen Bond. A SAPT-, QTAIM-, and NBO-Based Study. Journal of Physical Chemistry A, 2012, 116, 2322-2332.	2.5	96
7	Basis Set and Method Dependence in Atoms in Molecules Calculations. Journal of Physical Chemistry A, 2010, 114, 2240-2244.	2.5	93
8	Intramolecular H··Ĥ Interactions for the Crystal Structures of [4-((E)-But-1-enyl)-2,6-dimethoxyphenyl]pyridine-3-carboxylate and [4-((E)-Pent-1-enyl)-2,6-dimethoxyphenyl]pyridine-3-carboxylate; DFT Calculations on Modeled Styrene Derivatives. Journal of Physical Chemistry B, 2004, 108, 1831-1837.	2.6	71
9	Interplay between Intramolecular Resonance-Assisted Hydrogen Bonding and Local Aromaticity. II. 1,3-Dihydroxyaryl-2-aldehydes. Journal of Organic Chemistry, 2009, 74, 2059-2066.	3.2	68
10	Basis Set and Method Dependence in Quantum Theory of Atoms in Molecules Calculations for Covalent Bonds. Journal of Physical Chemistry A, 2010, 114, 12498-12505.	2.5	65
11	Methoxy group as an acceptor of proton in hydrogen bonds. Journal of Molecular Structure, 2002, 642, 97-104.	3.6	63
12	Relationship between substituent effect and aromaticity – Part III: naphthalene as a transmitting moiety for substituent effect. Journal of Physical Organic Chemistry, 2007, 20, 297-306.	1.9	61
13	Substituent effect in para substituted Cr(CO)5–pyridine complexes. Journal of Organometallic Chemistry, 2007, 692, 3866-3873.	1.8	53
14	Do intramolecular halogen bonds exist? Ab initio calculations and crystal structures' evidences. Structural Chemistry, 2008, 19, 5-11.	2.0	52
15	H-Bonding-Assisted Substituent Effect. Journal of Organic Chemistry, 2010, 75, 4944-4949.	3.2	45
16	The nature of NO-bonding in N-oxide group. Physical Chemistry Chemical Physics, 2015, 17, 16375-16387.	2.8	45
17	Relation between π-Electron Localization/Delocalization and H-Bond Strength in Derivatives of <i>o</i> -Hydroxy-Schiff Bases. Journal of Organic Chemistry, 2008, 73, 2138-2145.	3.2	44
18	Aromaticity of substituted fulvene derivatives: substituent-dependent ring currents. Physical Chemistry Chemical Physics, 2010, 12, 10740.	2.8	44

#	Article	IF	CITATIONS
19	The proton transfer reaction in malonaldehyde derivatives: Substituent effects and quasi-aromaticity of the proton bridge. Chemical Physics, 2007, 342, 43-54.	1.9	43
20	Divalent carbon atom as the proton acceptor in hydrogen bonding. Physical Chemistry Chemical Physics, 2009, 11, 5711.	2.8	43
21	EL: the new aromaticity measure based on one-electron density function. Structural Chemistry, 2012, 23, 1173-1183.	2.0	42
22	Halogen bond, hydrogen bond and Nâ<⁻C interaction – On interrelation among these three noncovalent interactions. Computational and Theoretical Chemistry, 2012, 998, 26-33.	2.5	40
23	Ferrocenyl D-ï€-A chromophores containing 3-dicyanomethylidene-1-indanone and 1,3-bis(dicyanomethylidene)indane acceptor groups. Journal of Organometallic Chemistry, 2003, 675, 35-41.	1.8	35
24	Crystal and Molecular Structure of Pyrrole-2-carboxylic Acid; π-Electron Delocalization of Its Dimersâ^'DFT and MP2 Calculations. Journal of Physical Chemistry A, 2004, 108, 5815-5822.	2.5	35
25	Quasi-aromaticity—what does it mean?. Tetrahedron, 2015, 71, 4895-4908.	1.9	35
26	Ferrocenyl D–π–A conjugated polyenes with 3-dicyanomethylidene-1-indanone and 1,3-bis(dicyanomethylidene)indane acceptor groups: Synthesis, linear and second-order nonlinear optical properties and electrochemistry. Journal of Organometallic Chemistry, 2006, 691, 323-330.	1.8	34
27	Do intramolecular halogen bonds exist? Ab initio calculations and crystal structures' evidences. Structural Chemistry, 2007, 18, 859-865.	2.0	34
28	The halogen <mml:math <br="" altimg="si56.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mo>â<¯</mml:mo></mml:mrow></mml:math> oxygen interaction in 3-halogenopropenal revisited – The dimer model vs. QTAIM indications. Chemical Physics, 2013, 415, 207-213.	1.9	33
29	Does electron density in bond critical point reflect the formal charge distribution in H-bridges? The case of charge-assisted hydrogen bonds (CAHBs). Computational and Theoretical Chemistry, 2011, 966, 113-119.	2.5	31
30	The influence of substituent effect on noncovalent interactions in ternary complexes stabilized by hydrogen-bonding and halogen-bonding. Computational and Theoretical Chemistry, 2014, 1027, 173-178.	2.5	28
31	Tuning the Strength of the Resonance-Assisted Hydrogen Bond in <i>o</i> -Hydroxybenzaldehyde by Substitution in the Aromatic Ring ¹ . Journal of Physical Chemistry A, 2018, 122, 2279-2287.	2.5	28
32	Heteronuclear Intermolecular Resonance-Assisted Hydrogen Bonds. The Structure of Pyrrole-2-Carboxamide (PyCa). Journal of Physical Chemistry B, 2006, 110, 5875-5882.	2.6	27
33	Halogen–halogen interaction in view of many-body approach. Chemical Physics Letters, 2013, 583, 8-13.	2.6	26
34	Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge. Journal of Physical Chemistry A, 2018, 122, 5484-5492.	2.5	26
35	Sulfhydryl-Selective, Covalent Labeling of Biomolecules with Transition Metallocarbonyl Complexes. Synthesis of (η5-C5H5)M(CO)3(η1-N-Maleimidato) (M = Mo, W), X-ray Structure, and Reactivity Studies. Bioconjugate Chemistry, 2005, 16, 1218-1224.	3.6	25
36	Does the concept of Clar's aromatic sextet work for dicationic forms of polycyclic aromatic hydrocarbons?—testing the model against charged systems in singlet and triplet states. Physical Chemistry Chemical Physics, 2011, 13, 11976-11984.	2.8	25

#	Article	IF	CITATIONS
37	Substituent effects in mono- and disubstituted 1,3,5,7-cyclooctatetraene derivatives in natural and planar conformations. New Journal of Chemistry, 2009, 33, 1753.	2.8	22
38	The shape of the halogen atom—anisotropy of electron distribution and its dependence on basis set and method used. Structural Chemistry, 2013, 24, 1297-1306.	2.0	22
39	<i>N</i> -Oxide as a Proton Accepting Group in Multicomponent Crystals: X-ray and Theoretical Studies on New <i>p</i> -Nitropyridine- <i>N</i> -oxide Co-Crystals. Crystal Growth and Design, 2015, 15, 5802-5815.	3.0	22
40	Halogen bond versus hydrogen bond: The manyâ€body interactions approach. International Journal of Quantum Chemistry, 2017, 117, e25348.	2.0	21
41	Intramolecular carbonylâ<̄carbonyl interactions in W, Mo and Fe complexes containing the η1-N-maleimidato ligand: X-ray, DFT and AIM studies. Journal of Organometallic Chemistry, 2006, 691, 3232-3238.	1.8	19
42	Cyclooctatetraene in metal complexes—planar does not mean aromatic. New Journal of Chemistry, 2010, 34, 1855.	2.8	17
43	Cyclooctatetraene dianion—an artifact?. Journal of Computational Chemistry, 2011, 32, 1441-1448.	3.3	17
44	The substituent effect on benzene dications. Physical Chemistry Chemical Physics, 2014, 16, 4752-4763.	2.8	17
45	Why 1,2-quinone derivatives are more stable than their 2,3-analogues?. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	16
46	Source of Cooperativity in Halogenâ€Bonded Haloamine Tetramers. ChemPhysChem, 2016, 17, 474-480.	2.1	16
47	Routes of ï€-Electron Delocalization in 4-Substituted-1,2-benzoquinones. Journal of Organic Chemistry, 2011, 76, 550-556.	3.2	15
48	Temperature-dependent polymorphism of N-(4-fluorophenyl)-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide: experimental and theoretical studies on intermolecular interactions in the crystal state. Structural Chemistry, 2014, 25, 979-989.	2.0	14
49	The role of sulfur interactions in crystal architecture: experimental and quantum theoretical studies on hydrogen, halogen, and chalcogen bonds in trithiocyanuric acid–pyridine <i>N</i> -oxide co-crystals. CrystEngComm, 2021, 23, 324-334.	2.6	13
50	The phospha-Michael addition of dimethyl- and diphenylphosphites to the η1-N-maleimidato ligand: Inhibition of serine hydrolases by half-sandwich metallocarbonyl azaphosphonates. Journal of Organometallic Chemistry, 2009, 694, 908-915.	1.8	12
51	<i>N</i> -Oxide– <i>N</i> -oxide interactions and ClCl halogen bonds in pentachloropyridine <i>N</i> -oxide: the many-body approach to interactions in the crystal state. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 113-119.	0.5	12
52	Tuning Aromaticity of <i>para</i> ‣ubstituted Benzene Derivatives with an External Electric Field. ChemPhysChem, 2018, 19, 590-595.	2.1	12
53	Are the O–H⋯H–C intramolecular systems of 2-cyclopropyl ethenol and its derivatives classified as dihydrogen bonds? Ab initio and DFT study. Computational and Theoretical Chemistry, 2004, 674, 147-152.	1.5	11
54	Aryl (ferrocenyl)-capped ethenylazaferrocenes: synthesis, structure and electrochemistry. New Journal of Chemistry, 2006, 30, 901-907.	2.8	11

#	Article	IF	CITATIONS
55	Inter- and intramolecular hydrogen bonds – Structures of 1-methylpyrrole-2-carboxamide and 1-hydroxypyrrole-2-carboxamide. Journal of Molecular Structure, 2007, 844-845, 173-180.	3.6	11
56	Modeling the electronic structure of formamide: an acid/base amphoteric solvent. Structural Chemistry, 2012, 23, 1711-1721.	2.0	11
57	Synthesis and characterization of new M(II) carbonyl complexes (MÂ=ÂFe or Ru) including an Î-1-N-maleimidato ligand. Reactivity studies with biological thiols. Journal of Organometallic Chemistry, 2016, 801, 101-110.	1.8	11
58	Unusual electron density topology and intramolecular steric π–π interaction in 1,3,5,7-cyclooctatetraene. Chemical Physics Letters, 2009, 481, 34-38.	2.6	10
59	Feynman force components: basis for a solution to the covalent vs. ionic dilemma. Physical Chemistry Chemical Physics, 2016, 18, 25022-25026.	2.8	10
60	Non-covalent interactions of N-phenyl-1,5-dimethyl-1H-imidazole-4-carboxamide 3-oxide derivatives—a case of intramolecular N-oxide hydrogen bonds. Structural Chemistry, 2017, 28, 1229-1241.	2.0	9
61	Metallocarbonyl complexes: (η5-C5H5)M(CO)n(η1-N-imidato) (M = Fe, Ru, Mo, W; n = 2, 3) as new photoactive CO-releasing molecules (CORMs). Journal of Photochemistry and Photobiology A: Chemistry, 2018, 351, 115-123.	3.9	9
62	Does Proton Transfer Always Take Place in Molecules of 2-Substituted Pyridine- <i>N</i> -oxides? The Case of 2-Aminopyridine- <i>N</i> -oxide Crystal Structure and Its 3,5-Dinitrobenzoic Acid Co-crystal. Crystal Growth and Design, 2018, 18, 7373-7382.	3.0	9
63	Characteristics of ring critical point as descriptors of H-bond strength. Journal of Chemical Research, 2004, 2004, 492-493.	1.3	8
64	Reaction of ferrocenecarbothioamide and N-(ethoxycarbonyl)ferrocenecarbothioamide with alkyl halides. Journal of Organometallic Chemistry, 2008, 693, 263-268.	1.8	8
65	Use of Quantum Theory of Atoms in Molecules in the Search for Appropriate Hydrogen Atom Locations in X-ray Diffraction Based Studies. Crystal Growth and Design, 2016, 16, 6841-6848.	3.0	8
66	η1-N-succinimidato complexes of iron, molybdenum and tungsten as reversible inhibitors of papain. Journal of Inorganic Biochemistry, 2009, 103, 1162-1168.	3.5	7
67	Diels-Alder reaction with cyclopentadiene and electronic structures of (Ε5-cyclopentadienyl)M(CO)x(Ε1-N-maleimidato) (M=Fe, Mo, W, x=2 or 3). Journal of Organometallic Chemistry, 2009, 694, 1354-1358.	1.8	7
68	The effect of benzoannulation on the transition state and the proton transfer equilibrium in di(2-pyridyl)methane derivatives. New Journal of Chemistry, 2011, 35, 1433.	2.8	7
69	C—BrS halogen bonds in novel thiourea <i>N</i> -oxide cocrystals: analysis of energetic and QTAIM parameters. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 170-176.	0.5	7
70	Bonding in Î ² -diketiminate boron and its analogues. Structural Chemistry, 2009, 20, 919-923.	2.0	6
71	UV-vis spectra of singlet state cationic polycyclic aromatic hydrocarbons: Time-dependent density functional theory study. Journal of Chemical Physics, 2014, 140, 044324.	3.0	6
72	Interactions of polar hydrogen bond donor solvents with ions: a theoretical study. Structural Chemistry, 2016, 27, 1279-1289.	2.0	6

#	Article	IF	CITATIONS
73	Cooperation/Competition between Halogen Bonds and Hydrogen Bonds in Complexes of 2,6-Diaminopyridines and X-CY3 (X = Cl, Br; Y = H, F). Symmetry, 2021, 13, 766.	2.2	6
74	A straightforward conversion of 1,4-quinones into polycyclic pyrazoles via [3 + 2]-cycloaddition with fluorinated nitrile imines. Beilstein Journal of Organic Chemistry, 2021, 17, 1509-1517.	2.2	6
75	Cytotoxicity of pianoâ€stool ruthenium cyclopentadienyl complexes bearing different imidato ligands. Applied Organometallic Chemistry, 2022, 36, .	3.5	6
76	Resonance-Assisted Hydrogen Bond—Revisiting the Original Concept in the Context of Its Criticism in the Literature. International Journal of Molecular Sciences, 2022, 23, 233.	4.1	6
77	Ï€â€Electronic communication through mono and multinuclear gold(I) complexes. International Journal of Quantum Chemistry, 2009, 109, 2507-2519.	2.0	5
78	Aromaticity Induced by Electric Field: The Case of Polycalicenes. Journal of Organic Chemistry, 2015, 80, 9091-9101.	3.2	4
79	A Useful Synthetic Route to <i>N</i> -Nonsubstituted Succinimides via Light-Induced Degradation of Metallocarbonyl Complexes. Organometallics, 2021, 40, 663-673.	2.3	4
80	Trithiocyanuric acid: novel cocrystals and analysis of its tautomeric forms. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 49-55.	0.5	4
81	Co-crystals synthesis of 2- and 4-mercaptopyridine with thiourea and its analogue, trithiocyanuric acid. CrystEngComm, 0, , .	2.6	4
82	Charge-assisted N—HI and C—HI hydrogen bonding in (1R,2S)-1-(ferrocenylmethyl)-2-(methoxymethyl)pyrrolidinium iodide. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, m55-m57.	0.4	3
83	Ionic cocrystals of dithiobispyridines: the role of II halogen bonds in the building of iodine frameworks and the stabilization of crystal structures. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 458-466.	0.5	3
84	Inverse electronâ€demand Dielsâ€Alder (iEDDA) bioorthogonal conjugation of halfâ€sandwich transition metallocarbonyl entities to a model protein. Applied Organometallic Chemistry, 2020, 34, e5507.	3.5	2
85	A rare case of a 2:2:1 ternary cocrystal of pyridine sulfides and trithiocyanuric acid. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 479-484.	0.5	2
86	2-[3-Dicyanomethylene-2-(3-methoxybenzylidene)indan-1-ylidene]malononitrile. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o3052-o3053.	0.2	1
87	Professor Tadeusz Marek Krygowski. Structural Chemistry, 2007, 18, 755-756.	2.0	1
88	A novel hydrogen-bonding <i>N</i> -oxide–sulfonamide–nitro N—HO synthon determining the architecture of benzenesulfonamide cocrystals. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 7-13.	0.5	1
89	Novel melamine – salicylic salt solvates and co-crystals; an analysis of the energetic parameters of the intermolecular hydrogen bonds stabilizing the crystal structure. CrystEngComm, 2022, 24, 5688-5696.	2.6	1
90	5-Methoxy-4-(4-methoxyphenyl)isochroman-3-ol. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o11-o13.	0.2	0

#	Article	IF	CITATIONS
91	4-(E)-But-1-enyl-2,6-dimethoxyphenyl nicotinate. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, 0854-0856.	0.2	0
92	8-Methoxy-4-(4-methoxyphenyl)isochroman-3-ol. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o2000-o2002.	0.2	0
93	Isochroman derivatives and their tendency to crystallize in chiral space groups. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, o239-o241.	0.4	Ο
94	Dimethyl 3,4,5,5-tetraphenyl-1,3-thiazolidine-2,2-dicarboxylate and 3,3-dichloro-2,2,4,4,3â€2-pentamethyl-r-2â€2,t-4â€2-diphenylcyclobutane-1-spiro-5â€2-1,3-thiazolidine. Acta Crystallographica Section C: Crystal Structure Communications, 2004, 60, o595-o599.	0.4	0
95	Crystal structure of 3,6-bis(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 86-88.	0.5	Ο