André de Oliveira Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2409351/publications.pdf

Version: 2024-02-01

933447 888059 17 764 10 17 citations h-index g-index papers 17 17 17 1040 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Role of plant lipid transfer proteins in plant cell physiology—A concise review. Peptides, 2007, 28, 1144-1153.	2.4	233
2	Plant defensinsâ€"Prospects for the biological functions and biotechnological properties. Peptides, 2009, 30, 1007-1020.	2.4	222
3	Plant Defensins and Defensin-Like Peptides - Biological Activities and Biotechnological Applications. Current Pharmaceutical Design, 2011, 17, 4270-4293.	1.9	122
4	Interaction between the plant ApDef1 defensin and Saccharomyces cerevisiae results in yeast death through a cell cycle- and caspase-dependent process occurring via uncontrolled oxidative stress. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3429-3443.	2.4	43
5	Isolation, characterization and mechanism of action of an antimicrobial peptide fromLecythis pisonisseeds with inhibitory activity againstCandida albicans. Acta Biochimica Et Biophysica Sinica, 2015, 47, 716-729.	2.0	27
6	Improved smallest peptides based on positive charge increase of the γ-core motif from Pν D ₁ and their mechanism of action against Species. International Journal of Nanomedicine, 2019, Volume 14, 407-420.	6.7	21
7	Recombinant production and \hat{l}_{\pm} -amylase inhibitory activity of the lipid transfer protein from Vigna unguiculata (L. Walp.) seeds. Process Biochemistry, 2018, 65, 205-212.	3.7	18
8	Insight into the α-Amylase Inhibitory Activity of Plant Lipid Transfer Proteins. Journal of Chemical Information and Modeling, 2018, 58, 2294-2304.	5.4	14
9	A synthetic peptide derived of the β2–β3 loop of the plant defensin from Vigna unguiculata seeds induces Leishmania amazonensis apoptosis-like cell death. Amino Acids, 2019, 51, 1633-1648.	2.7	14
10	Molecular characterization of Helja, an extracellular jacalin-related protein from Helianthus annuus: Insights into the relationship of this protein with unconventionally secreted lectins. Journal of Plant Physiology, 2015, 183, 144-153.	3 . 5	12
11	Activity of recombinant and natural defensins from Vigna unguiculata seeds against Leishmania amazonensis. Experimental Parasitology, 2013, 135, 116-125.	1.2	9
12	The toxic effect of <i>Vu</i> -Defr, a defensin from <i>Vigna unguiculata</i> seeds, on <i>Leishmania amazonensis</i> is associated with reactive oxygen species production, mitochondrial dysfunction, and plasma membrane perturbation. Canadian Journal of Microbiology, 2018, 64, 455-464.	1.7	8
13	Design of improved synthetic antifungal peptides with targeted variations in charge, hydrophobicity and chirality based on a correlation study between biological activity and primary structure of plant defensin Î ³ -cores. Amino Acids, 2021, 53, 219-237.	2.7	6
14	Inhibition mechanism of human salivary \hat{l}_{\pm} -amylase by lipid transfer protein from Vigna unguiculata. Computational Biology and Chemistry, 2020, 85, 107193.	2.3	5
15	Bifunctional Inhibitors from Capsicum chinense Seeds with Antimicrobial Activity and Specific Mechanism of Action Against Phytopathogenic Fungi. Protein and Peptide Letters, 2021, 28, 149-163.	0.9	5
16	Antimicrobial peptides of the genus Capsicum: a mini review. Horticulture Environment and Biotechnology, 2022, 63, 453-466.	2.1	4
17	Anti-Neuroblastoma Properties of a Recombinant Sunflower Lectin. International Journal of Molecular Sciences, 2017, 18, 92.	4.1	1