
Michael Maskos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2409138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology, 2013, 8, 772-781.	15.6	1,817
2	Nanoparticle Size Is a Critical Physicochemical Determinant of the Human Blood Plasma Corona: A Comprehensive Quantitative Proteomic Analysis. ACS Nano, 2011, 5, 7155-7167.	7.3	749
3	Impact of the Nanoparticle–Protein Corona on Colloidal Stability and Protein Structure. Langmuir, 2012, 28, 9673-9679.	1.6	291
4	Techniques To Control Polymersome Size. Macromolecules, 2015, 48, 7396-7409.	2.2	134
5	Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: Comparison with conventional monocultures. Particle and Fibre Toxicology, 2011, 8, 6.	2.8	123
6	The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein Journal of Nanotechnology, 2014, 5, 1774-1786.	1.5	114
7	Protein corona – from molecular adsorption to physiological complexity. Beilstein Journal of Nanotechnology, 2015, 6, 857-873.	1.5	108
8	Double-Shell Vesicles, Strings of Vesicles and Filaments Found in Crosslinked Micellar Solutions of Poly(1,2-butadiene)-block-poly(ethylene oxide) Diblock Copolymers. Macromolecular Rapid Communications, 2001, 22, 271-273.	2.0	97
9	Polymeric Nanoparticles with Neglectable Protein Corona. Small, 2020, 16, e1907574.	5.2	95
10	Complex Formation of DNA with Oppositely Charged Polyelectrolytes of Different Chain Topology: Cylindrical Brushes and Dendrimers. Macromolecules, 2007, 40, 7998-8006.	2.2	92
11	Switchable information carriers based on shape memory polymer. Journal of Materials Chemistry, 2012, 22, 7757.	6.7	87
12	Nanoparticles Built of Cross-Linked Heterotelechelic, Amphiphilic Poly(dimethylsiloxane)-b-poly(ethylene oxide) Diblock Copolymers. Macromolecules, 2000, 33, 4780-4790.	2.2	84
13	Specific salt effects on thermophoresis of charged colloids. Soft Matter, 2014, 10, 1931.	1.2	83
14	Lightâ€Orchestrated Macromolecular "Accordions― Reversible Photoinduced Shrinking of Rigidâ€Rod Polymers. Angewandte Chemie - International Edition, 2011, 50, 12559-12563.	7.2	82
15	Hydrophobic Shell Loading of PB- <i>b</i> -PEO Vesicles. Macromolecules, 2009, 42, 357-361.	2.2	80
16	Size Influences the Effect of Hydrophobic Nanoparticles on Lung Surfactant Model Systems. Biophysical Journal, 2014, 106, 289-298.	0.2	80
17	High-Resolution Investigation of Nanoparticle Interaction with a Model Pulmonary Surfactant Monolayer. ACS Nano, 2012, 6, 1677-1687.	7.3	75
18	Fine-Tuning of Phase Structures and Thermoplasticity of Polyelectrolyteâ^'Surfactant Complexes:Â Copolymers of Ionic Monomers withN-Alkylacrylamides. Macromolecules, 1996, 29, 4199-4205.	2.2	69

#	Article	IF	CITATIONS
19	The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles. Beilstein Journal of Nanotechnology, 2014, 5, 1380-1392.	1.5	68
20	Hockey-Puck Micelles from Oligo(p-benzamide)-b-PEG Rod–Coil Block Copolymers. Angewandte Chemie - International Edition, 2006, 45, 2969-2975.	7.2	64
21	Finite-Size Networks from Cylindrical Polyelectrolyte Brushes and Porphyrins. Macromolecules, 2009, 42, 830-840.	2.2	63
22	Continuously manufactured magnetic polymersomes – a versatile tool (not only) for targeted cancer therapy. Nanoscale, 2013, 5, 11385.	2.8	61
23	Investigation of various shellac grades: additional analysis for identity. Drug Development and Industrial Pharmacy, 2009, 35, 694-703.	0.9	51
24	Synthesis of Amphiphilic Poly(organosiloxane) Nanospheres with Different Coreâ^'Shell Architectures. Macromolecules, 2002, 35, 6851-6857.	2.2	50
25	Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins. Archives of Toxicology, 2013, 87, 1053-1065.	1.9	50
26	Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum. Langmuir, 2015, 31, 8873-8881.	1.6	50
27	In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch. Particle and Fibre Toxicology, 2014, 11, 68.	2.8	49
28	Dye Loading of Amphiphilic Poly(organosiloxane) Nanoparticles. Angewandte Chemie - International Edition, 2003, 42, 1714-1717.	7.2	43
29	Multihydroxyl-Functional Polystyrenes in Continuous Flow. Macromolecules, 2010, 43, 5582-5588.	2.2	43
30	Size controlled polymersomes by continuous self-assembly in micromixers. Polymer, 2012, 53, 2205-2210.	1.8	43
31	Tuning the Surface of Nanoparticles: Impact of Poly(2â€ethylâ€2â€oxazoline) on Protein Adsorption in Serum and Cellular Uptake. Macromolecular Bioscience, 2016, 16, 1287-1300.	2.1	43
32	Characterization of Polyorganosiloxane Nanoparticles in Aqueous Dispersion by Asymmetrical Flow Field-Flow Fractionation. Macromolecules, 2001, 34, 8347-8353.	2.2	42
33	On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system. Colloids and Surfaces B: Biointerfaces, 2013, 108, 110-119.	2.5	40
34	Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model. Beilstein Journal of Nanotechnology, 2015, 6, 517-528.	1.5	37
35	Influence of the solvent and the end groups on the morphology of cross-linked amphiphilic poly(1,2-butadiene)-b-poly(ethylene oxide) nanoparticles. Polymer, 2006, 47, 1172-1178.	1.8	35
36	Polystyrene Sulfonate–Porphyrin Assemblies: Influence of Polyelectrolyte and Porphyrin Structure. Journal of Physical Chemistry B, 2011, 115, 5716-5729.	1.2	32

#	Article	IF	CITATIONS
37	Flotillin-involved uptake of silica nanoparticles and responses of an alveolar-capillary barrier in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 275-287.	2.0	30
38	Magnetic Composite Thin Films of FexOy Nanoparticles and Photocrosslinked Dextran Hydrogels. Journal of Magnetism and Magnetic Materials, 2012, 324, 1488-1497.	1.0	29
39	Tracer diffusion of polyorganosiloxane nanoparticles in solution: Effects of tracer topology and particle concentration. Journal of Chemical Physics, 2000, 112, 3031-3039.	1.2	26
40	Topologically Controlled Interpolyelectrolyte Complexes. Macromolecules, 2008, 41, 9067-9071.	2.2	25
41	Characterization of Polymer Nanoparticles by Asymmetrical Flow Field Flow Fractionation (AF-FFF). Journal of Nanoscience and Nanotechnology, 2010, 10, 6834-6839.	0.9	22
42	Amphiphilic Poly(organosiloxane) Nanospheres as Nanoreactors for the Synthesis of Topologically Trapped Gold, Silver, and Palladium Colloids. Macromolecules, 2003, 36, 3974-3979.	2.2	20
43	Hofmeister effect in thermal field-flow fractionation of colloidal aqueous dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 65-70.	2.3	20
44	Macrocycles 11. Polycondensations of aliphatic dicarboxylic acid dichlorides with catechol or bis-trimethylsilyl catechol. Journal of Polymer Science Part A, 1999, 37, 3861-3870.	2.5	19
45	Circular Asymmetrical Flow Field-Flow Fractionation for the Semipreparative Separation of Particles. Analytical Chemistry, 2003, 75, 6105-6108.	3.2	17
46	Dye loading of unimolecular, amphiphilic polymeric nanocontainers. Polymer, 2005, 46, 3329-3336.	1.8	17
47	Cylindrical polyelectrolyte-comb-surfactant complexes. Polymer, 2006, 47, 7391-7396.	1.8	17
48	Magnetic polyorganosiloxane core–shell nanoparticles: Synthesis, characterization and magnetic fractionation. Journal of Magnetism and Magnetic Materials, 2010, 322, 3519-3526.	1.0	17
49	Ion Effects in Fieldâ€Flow Fractionation of Aqueous Colloidal Polystyrene. Macromolecular Chemistry and Physics, 2012, 213, 2353-2361.	1.1	17
50	Colloid–polymer mixtures in solution with refractive index matched acrylate colloids. Journal of Colloid and Interface Science, 2004, 279, 447-457.	5.0	16
51	Functionalization of Crosslinked Vesicles by Coâ€Selfâ€Assembly of a Gelable Diblock Copolymer and Mercaptosilane. Macromolecular Rapid Communications, 2008, 29, 1368-1371.	2.0	16
52	Multifunctional, multicompartment polyorganosiloxane magnetic nanoparticles for biomedical applications. Journal of Magnetism and Magnetic Materials, 2009, 321, 1386-1388.	1.0	16
53	Determination of Hamaker constants of polymeric nanoparticles in organic solvents by asymmetrical flow field-flow fractionation. Journal of Chromatography A, 2013, 1274, 151-158.	1.8	16
54	pH-change protective PB-b-PEO polymersomes. Polymer, 2011, 52, 1263-1267.	1.8	14

#	Article	IF	CITATIONS
55	Viscoelasticity of pore-spanning polymer membranes derived from giant polymersomes. Soft Matter, 2010, 6, 2508.	1.2	13
56	One-pot synthesis of poly(l-lactide) multi-arm star copolymers based on a polyester polyol macroinitiator. Polymer, 2013, 54, 1993-2000.	1.8	11
57	Kinetic Control of Block Copolymer Selfâ€Assembly in a Micromixing Device – Mechanistical Insight into Vesicle Formation Process. Macromolecular Chemistry and Physics, 2017, 218, 1600347.	1.1	11
58	Performance of nanoparticles for biomedical applications: The <i>in vitro</i> / <i>in vivo</i> discrepancy. Biophysics Reviews, 2022, 3, .	1.0	10
59	Association of a Cylindrical Polyelectrolyte Brush with Tetravalent Counterions. Macromolecular Rapid Communications, 2011, 32, 523-527.	2.0	9
60	Synthesis of a new microphase-separated polymer system by "counterion coupling―and its X-ray characterization. Macromolecular Rapid Communications, 1995, 16, 763-769.	2.0	8
61	Investigation of the Durability of Poly(Ether Urethane) in Water and Air. International Journal of Artificial Organs, 2011, 34, 129-133.	0.7	8
62	Stability of Nanoparticle Dispersions and Particle Agglomeration. Nanoscience and Technology, 2019, , 85-100.	1.5	8
63	Uptake of polymeric nanoparticles in a human induced pluripotent stem cell-based blood–brain barrier model: Impact of size, material, and protein corona. Biointerphases, 2021, 16, 021004.	0.6	7
64	Cylindrical Poly(oligo-DNA). Biomacromolecules, 2007, 8, 700-702.	2.6	6
65	Topologically Controlled Inter-Polyelectrolyte Complexes between Molecular Bottlebrushes and Dendrimers. Macromolecules, 2010, 43, 8645-8650.	2.2	6
66	Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures. Advances in Polymer Science, 2013, , 115-210.	0.4	6
67	Modular Manufacturing Platform for Continuous Synthesis and Analysis of Versatile Nanomaterials. Chemical Engineering and Technology, 2019, 42, 2085-2094.	0.9	6
68	Synthesis of block copolymer vesicles in a micromixer. Houille Blanche, 2009, 95, 125-128.	0.3	6
69	Water-soluble, cyclodextrin-functionalized semiconductor nanocrystals: Preparation and pH-dependent aggregation and emission properties. Journal of Luminescence, 2009, 129, 1428-1434.	1.5	5
70	Observation of interaction forces by investigation of the influence of eluent additives on the retention behavior of aqueous nanoparticle dispersions in asymmetrical flow field-flow fractionation. Journal of Chromatography A, 2021, 1637, 461840.	1.8	4
71	Oligo-DNA Functionalized Polyorganosiloxane Nanoparticles. , 2008, , 128-133.		3
72	Fluorophore‣abeled Siloxaneâ€Based Nanoparticles for Biomedical Applications. Macromolecular Symposia, 2011, 309-310, 141-146.	0.4	3

#	Article	IF	CITATIONS
73	Influence of oscillating main flow on separation efficiency in asymmetrical flow field-flow fractionation. Journal of Chromatography A, 2021, 1640, 461941.	1.8	2
74	Probing Polymersomeâ€Protein and â€Cell Interactions: Influence of Different Endâ€Groups and Environments. Macromolecular Symposia, 2011, 309-310, 134-140.	0.4	1
75	Selective solvent evaporation from binary mixtures of water and tetrahydrofuran using a falling film microreactor. Green Processing and Synthesis, 2017, 6, .	1.3	0
76	Gelatinâ€Based Capsules through Interfacial Polymerization: Batch and Continuous Flow Synthesis. Chemical Engineering and Technology, 2019, 42, 2119-2126.	0.9	0