Ivan I V Hadzaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2408795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlled thermistor effect in the system CuxNi1–x–yCo2yMn2–yO4. Journal of the European Ceramic Society, 2001, 21, 1783-1785.	5.7	95
2	Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temperature Physics, 2016, 42, 601-605.	0.6	44
3	Microstructure, crystal structure and electrical properties of Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics obtained at different sintering conditions. Journal of Alloys and Compounds, 2002, 347, 14-23.	5.5	40
4	PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics. Journal of the European Ceramic Society, 2005, 25, 2981-2984.	5.7	37
5	Evolution of porous structure and free-volume entities in magnesium aluminate spinel ceramics. Ceramics International, 2014, 40, 8561-8567.	4.8	37
6	Nanostructural Free-Volume Effects in Humidity-Sensitive MgO-Al2O3 Ceramics for Sensor Applications. Journal of Materials Engineering and Performance, 2016, 25, 866-873.	2.5	33
7	Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study. Nanoscale Research Letters, 2016, 11, 133.	5.7	32
8	Sintering-modified mixed Ni–Co–Cu oxymanganospinels for NTC electroceramics. Journal of Alloys and Compounds, 2011, 509, 447-450.	5.5	31
9	Degradation transformation in spinel-type functional thick-film ceramic materials. Microelectronics Reliability, 2014, 54, 2843-2848.	1.7	31
10	Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics. Physica B: Condensed Matter, 2015, 459, 116-121.	2.7	31
11	Nanostructured oxyspinel multilayers for novel high-efficient conversion and control. International Journal of Nanotechnology, 2014, 11, 843.	0.2	29
12	Influence of Sintering Temperature on Pore Structure and Electrical properties of Technologically Modified MgO-Al2O3 Ceramics. Medziagotyra, 2015, 21, .	0.2	29
13	Integrated thick-film nanostructures based on spinel ceramics. Nanoscale Research Letters, 2014, 9, 149.	5.7	28
14	Integrated Thick-Film P-i-p ⁺ Structures Based on Spinel Ceramics. Solid State Phenomena, 2013, 200, 156-161.	0.3	27
15	Multilayer thick-film structures based on spinel ceramics. Canadian Journal of Physics, 2014, 92, 822-826.	1.1	27
16	Combined study of internal nanovoids in Cu0.1Ni0.1Co1.6Mn1.2O4-based thick-film layers formed near grain boundaries. Applied Nanoscience (Switzerland), 0, , 1.	3.1	6
17	Extended Positron–Positronium Trapping Defects in the MgAl ₂ O ₄ Spinel Ceramics. Physica Status Solidi (B): Basic Research, 0, , 2100473.	1.5	4
18	Aging Phenomena in Cu _{0.1} Ni _{0.8} Co _{0.2} Mn _{1.9} O ₄ NTC Ceramics. Key Engineering Materials, 2001, 206-213, 1317-1320.	0.4	2

Ivan I V Hadzaman

#	Article	IF	CITATIONS
19	Ageing processes in one-, two- and three-layered thick films based on modified thermistor ceramics. , 2017, , .		1
20	Porous Structure and Exploitation Properties of Nanostructured MgO-Al <inf>2</inf> O <inf>3</inf> Ceramics Technologically Modified by Time-Temperature Regimes. , 2018, , .		1
21	New Spinel-Based Manganites Used in Thick-Film NTC Thermistors. Solid State Phenomena, 2003, 90-91, 565-570.	0.3	0
22	Structural and Magnetic Properties of Sintered Materials on the Basis of Zinc Oxide. Solid State Phenomena, 2013, 200, 261-266.	0.3	0
23	Design and properties of nanostructured thick-film structures for sensor microelectronics. , 2014, , .		0
24	Phase Composition and Structural Properties of Temperature-and Humidity-Sensitive Thick-Film Nanostructures. , 2018, , .		0
25	Microstructure of Modified Cu0.4 Ni0.4 Co0.4 Mn1.8 O4 Ceramics for Temperature Sensor Electronics. , 2018, , .		0
26	Microstructural Peculiarities Caused by Annealing in the Temperature-Sensitive Thick Films Based on Cu0.1Ni0.1Co1.6Mn1.2O4 Ceramics. , 2019, , .		0
27	Preparation and Characterization of One-Layered Humidity-Sensitive Thick Films for Sensor Electronics. , 2019, , .		Ο