

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2408530/publications.pdf Version: 2024-02-01

		117625	149698
135	4,070	34	56
papers	citations	h-index	g-index
135	135	135	2251
all docs	docs citations	times ranked	citing authors

Divit

#	Article	IF	CITATIONS
1	Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophysical Research Letters, 2006, 33, .	4.0	320
2	Interannual Variability of the Summertime North Pacific Subtropical High and its Relation to Atmospheric Convection over the Warm Pool Journal of the Meteorological Society of Japan, 2001, 79, 771-783.	1.8	186
3	Associations among the Components of the East Asian Summer Monsoon System in the Meridional Direction. Journal of the Meteorological Society of Japan, 2004, 82, 155-165.	1.8	182
4	Westward Extension of North Pacific Subtropical High in Summer Journal of the Meteorological Society of Japan, 2001, 79, 1229-1241.	1.8	158
5	Role of Subtropical Precipitation Anomalies in Maintaining the Summertime Meridional Teleconnection over the Western North Pacific and East Asia. Journal of Climate, 2009, 22, 2058-2072.	3.2	149
6	The Meridional Displacement of the Summer Asian Jet, Silk Road Pattern, and Tropical SST Anomalies. Journal of Climate, 2016, 29, 3753-3766.	3.2	121
7	Circulation anomalies associated with interannual variation of early- and late-summer precipitation in Northeast China. Science China Earth Sciences, 2011, 54, 1095-1104.	5.2	94
8	Comparisons of the Circulation Anomalies Associated with Extreme Heat in Different Regions of Eastern China. Journal of Climate, 2015, 28, 5830-5844.	3.2	93
9	Intensification of East Asian Summer Rainfall Interannual Variability in the Twenty-First Century Simulated by 12 CMIP3 Coupled Models. Journal of Climate, 2010, 23, 3316-3331.	3.2	83
10	Seasonal climatology of cut-off lows and associated precipitation patterns over Northeast China. Meteorology and Atmospheric Physics, 2010, 106, 37-48.	2.0	73
11	The ENSO–Asian Monsoon Interaction in a Coupled Ocean–Atmosphere GCM. Journal of Climate, 2007, 20, 5164-5177.	3.2	67
12	Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dynamics, 2012, 39, 329-346.	3.8	67
13	Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes. Advances in Atmospheric Sciences, 2016, 33, 1005-1023.	4.3	64
14	The ENSO's effect on eastern China rainfall in the following early summer. Advances in Atmospheric Sciences, 2009, 26, 333-342.	4.3	62
15	Skillful seasonal prediction of Yangtze river valley summer rainfall. Environmental Research Letters, 2016, 11, 094002.	5.2	61
16	Extratropical Factors Affecting the Variability in Summer Precipitation over the Yangtze River Basin, China. Journal of Climate, 2017, 30, 8357-8374.	3.2	58
17	Subseasonal Variation in ENSO-Related East Asian Rainfall Anomalies during Summer and Its Role in Weakening the Relationship between the ENSO and Summer Rainfall in Eastern China since the Late 1970s. Journal of Climate, 2011, 24, 2271-2284.	3.2	57
18	External and Internal Summer Atmospheric Variability in the Western North Pacific and East Asia. Journal of the Meteorological Society of Japan, 2006, 84, 447-462.	1.8	56

#	Article	IF	CITATIONS
19	Two distinct patterns of spring Eurasian snow cover anomaly and their impacts on the East Asian summer monsoon. Journal of Geophysical Research, 2010, 115, .	3.3	56
20	The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases. Journal of Geophysical Research, 2012, 117, .	3.3	56
21	Response of the Asian summer monsoon to weakening of Atlantic thermohaline circulation. Advances in Atmospheric Sciences, 2008, 25, 723-736.	4.3	51
22	Interannual variation of North China rainfall in rainy season and SSTs in the equatorial eastern Pacific. Science Bulletin, 2005, 50, 2069-2073.	9.0	48
23	A decadal shift of summer surface air temperature over Northeast Asia around the mid-1990s. Advances in Atmospheric Sciences, 2014, 31, 735-742.	4.3	47
24	Abrupt Northward Jump of the East Asian Upper-Tropospheric Jet Stream in Mid-Summer. Journal of the Meteorological Society of Japan, 2008, 86, 857-866.	1.8	45
25	Interdecadal enhancement of the walker circulation over the Tropical Pacific in the late 1990s. Advances in Atmospheric Sciences, 2013, 30, 247-262.	4.3	44
26	Intensified impact of tropical Atlantic SST on the western North Pacific summer climate under a weakened Atlantic thermohaline circulation. Climate Dynamics, 2015, 45, 2033-2046.	3.8	44
27	Variation in summer surface air temperature over Northeast Asia and its associated circulation anomalies. Advances in Atmospheric Sciences, 2016, 33, 1-9.	4.3	44
28	Impact of Atlantic sea surface temperature anomalies on the summer climate in the western North Pacific during 1997–1998. Journal of Geophysical Research, 2005, 110, .	3.3	43
29	Impact of the Atlantic Ocean on the multidecadal fluctuation of El Niño–Southern Oscillation–South Asian monsoon relationship in a coupled general circulation model. Journal of Geophysical Research, 2010, 115, .	3.3	42
30	Why was the strengthening of rainfall in summer over the Yangtze River valley in 2016 less pronounced than that in 1998 under similar preceding El Niño events?—Role of midlatitude circulation in August. Advances in Atmospheric Sciences, 2017, 34, 1290-1300.	4.3	41
31	Simulated Influence of the Atlantic Multidecadal Oscillation on Summer Eurasian Nonuniform Warming since the Mid-1990s. Advances in Atmospheric Sciences, 2019, 36, 811-822.	4.3	41
32	Predictability of the western North Pacific summer climate associated with different ENSO phases by ENSEMBLES multi-model seasonal forecasts. Climate Dynamics, 2014, 43, 1829-1845.	3.8	40
33	Large-Scale Circulation Anomalies and Intraseasonal Oscillations Associated with Long-Lived Extreme Heat Events in South China. Journal of Climate, 2018, 31, 213-232.	3.2	40
34	Causes of the Extreme Hot Midsummer in Central and South China during 2017: Role of the Western Tropical Pacific Warming. Advances in Atmospheric Sciences, 2019, 36, 465-478.	4.3	37
35	Weakening of interannual variability in the summer East Asian upper-tropospheric westerly jet since the mid-1990s. Advances in Atmospheric Sciences, 2011, 28, 1246-1258.	4.3	35
36	Seasonal Forecasts of the Summer 2016 Yangtze River Basin Rainfall. Advances in Atmospheric Sciences, 2018, 35, 918-926.	4.3	34

#	Article	IF	CITATIONS
37	Dry Tropical Nights and Wet Extreme Heat in Beijing: Atypical Configurations between High Temperature and Humidity. Monthly Weather Review, 2014, 142, 1792-1802.	1.4	33
38	Change in earlyâ€summer meridional teleconnection over the western North Pacific and East Asia around the late 1970s. International Journal of Climatology, 2010, 30, 2195-2204.	3.5	32
39	Local and Remote Factors Affecting the SST–Precipitation Relationship over the Western North Pacific during Summer. Journal of Climate, 2014, 27, 5132-5147.	3.2	32
40	Evolution of the Circulation Anomalies and the Quasi-Biweekly Oscillations Associated with Extreme Heat Events in Southern China. Journal of Climate, 2016, 29, 6909-6921.	3.2	32
41	Recent advances in monsoon studies in China. Advances in Atmospheric Sciences, 2015, 32, 206-229.	4.3	30
42	Intensification of the Western North Pacific Anticyclone Response to the Short Decaying El Niño Event due to Greenhouse Warming. Journal of Climate, 2016, 29, 3607-3627.	3.2	29
43	Asymmetric Relationship between the Meridional Displacement of the Asian Westerly Jet and the Silk Road Pattern. Advances in Atmospheric Sciences, 2018, 35, 389-396.	4.3	29
44	Subseasonal Change in the Seesaw Pattern of Precipitation between the Yangtze River Basin and the Tropical Western North Pacific during Summer. Advances in Atmospheric Sciences, 2018, 35, 1231-1242.	4.3	28
45	Largeâ€scale circulation anomalies associated with †tropical night' weather in Beijing, China. International Journal of Climatology, 2014, 34, 1980-1989.	3.5	27
46	Influences of tropical circulation and sea surface temperature anomalies on extreme heat over Northeast Asia in the midsummer of 2018. Atmospheric and Oceanic Science Letters, 2019, 12, 238-245.	1.3	27
47	Midlatitude westward propagating disturbances preceding intraseasonal oscillations of convection over the subtropical western North Pacific during summer. Geophysical Research Letters, 2007, 34, .	4.0	26
48	The 30–60-day intraseasonal oscillations over the subtropical western North Pacific during the summer of 1998. Advances in Atmospheric Sciences, 2014, 31, 1-7.	4.3	25
49	Circulation anomalies in the mid–high latitudes responsible for the extremely hot summer of 2018 over northeast Asia. Atmospheric and Oceanic Science Letters, 2019, 12, 231-237.	1.3	25
50	Large-Scale Circulation Anomalies Associated with Extreme Heat in South Korea and Southern–Central Japan. Journal of Climate, 2019, 32, 2747-2759.	3.2	25
51	How does a weakened Atlantic thermohaline circulation lead to an intensification of the ENSOâ€south Asian summer monsoon interaction?. Geophysical Research Letters, 2008, 35, .	4.0	24
52	Spring Indian Ocean-western Pacific SST contrast and the East Asian summer rainfall anomaly. Advances in Atmospheric Sciences, 2013, 30, 1560-1568.	4.3	24
53	Large-scale circulation anomalies associated with interannual variation in monthly rainfall over South China from May to August. Advances in Atmospheric Sciences, 2014, 31, 273-282.	4.3	24
54	Intraseasonal variation of the East Asian summer monsoon associated with the Madden–Julian Oscillation. Atmospheric Science Letters, 2018, 19, e794.	1.9	24

#	Article	IF	CITATIONS
55	Linear relationship between the interdecadal and interannual variabilities of North China rainfall in rainy season. Science Bulletin, 2003, 48, 1040-1044.	1.7	23
56	Dominant patterns of summer rainfall anomalies in East China during 1951–2006. Advances in Atmospheric Sciences, 2012, 29, 695-704.	4.3	23
57	The interannual variation in monthly temperature over Northeast China during summer. Advances in Atmospheric Sciences, 2014, 31, 515-524.	4.3	23
58	The Seasonal Prediction of the Exceptional Yangtze River Rainfall in Summer 2020. Advances in Atmospheric Sciences, 2021, 38, 2055-2066.	4.3	23
59	Interannual variation of tropical night frequency in Beijing and associated large-scale circulation background. Advances in Atmospheric Sciences, 2012, 29, 295-306.	4.3	22
60	Weakened Impact of the Indian Early Summer Monsoon on North China Rainfall around the Late 1970s: Role of Basic-State Change. Journal of Climate, 2017, 30, 7991-8005.	3.2	22
61	Intensified anticyclonic anomaly over the western North Pacific during El Niño decaying summer under a weakened Atlantic thermohaline circulation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,637.	3.3	21
62	Thermocline Fluctuations in the Equatorial Pacific Related to the Two Types of El Niño Events. Journal of Climate, 2017, 30, 6611-6627.	3.2	20
63	Differences in the Silk Road Pattern and Its Relationship to the North Atlantic Oscillation between Early and Late Summers. Journal of Climate, 2018, 31, 9283-9292.	3.2	20
64	Asymmetric Relationship between Indian Ocean SST and the Western North Pacific Summer Monsoon. Journal of Climate, 2015, 28, 1383-1395.	3.2	19
65	Meridional Displacement of the East Asian Upper-tropospheric Westerly Jet and Its Relationship with the East Asian Summer Rainfall in CMIP5 Simulations. Advances in Atmospheric Sciences, 2019, 36, 1203-1216.	4.3	19
66	The Climatological Rossby Wave Source over the STCZs in the Summer Northern Hemisphere. Journal of the Meteorological Society of Japan, 2004, 82, 657-669.	1.8	19
67	Role of Large-Scale Circulation and Terrain in Causing Extreme Heat in Western North China. Journal of Climate, 2016, 29, 2511-2527.	3.2	18
68	Interdecadal change on the relationship between the mid-summer temperature in South China and atmospheric circulation and sea surface temperature. Climate Dynamics, 2018, 51, 2113-2126.	3.8	18
69	Impacts of two types of El Niño on the MJO during boreal winter. Advances in Atmospheric Sciences, 2016, 33, 979-986.	4.3	17
70	Projected change in the relationship between East Asian summer rainfall and upper-tropospheric westerly jet. Science Bulletin, 2013, 58, 1436-1442.	1.7	16
71	Predictability of the East Asian winter monsoon indices by the coupled models of ENSEMBLES. Advances in Atmospheric Sciences, 2014, 31, 1279-1292.	4.3	16
72	Impact of Tropical Pacific Precipitation Anomaly on the East Asian Upper-Tropospheric Westerly Jet during the Boreal Winter. Journal of Climate, 2015, 28, 6457-6474.	3.2	16

#	Article	IF	CITATIONS
73	Relationship between the Future Projections of Sahel Rainfall and the Simulation Biases of Present South Asian and Western North Pacific Rainfall in Summer. Journal of Climate, 2019, 32, 1327-1343.	3.2	16
74	Breakdown of the Summertime Meridional Teleconnection Pattern over the Western North Pacific and East Asia since the Early 2000s. Journal of Climate, 2020, 33, 8487-8505.	3.2	16
75	The 1997/98 El Niño: A test for climate models. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	15
76	Southern European rainfall reshapes the early-summer circumglobal teleconnection after the late 1970s. Climate Dynamics, 2017, 48, 3855-3868.	3.8	15
77	Two Distinct Types of Extratropical Circulation Anomalies Associated with Cold Surges over the South China Sea. Journal of Climate, 2019, 32, 5069-5084.	3.2	15
78	Interannual Variability of the Tropical Cyclone Landfall Frequency over the Southern and Northern Regions of East Asia in Autumn. Journal of Climate, 2019, 32, 8677-8686.	3.2	15
79	Impact of cold surges on the Maddenâ€Julian oscillation propagation over the Maritime Continent. Atmospheric Science Letters, 2018, 19, e854.	1.9	14
80	The Relationship between the North Atlantic Oscillation and the Silk Road Pattern in Summer. Journal of Climate, 2022, 35, 3091-3102.	3.2	14
81	Precursory SST anomalies associated with the convection over the western Pacific warm pool. Science Bulletin, 2002, 47, 696.	1.7	13
82	Arctic oscillation and Antarctic oscillation in internal atmospheric variability with an ensemble AGCM simulation. Advances in Atmospheric Sciences, 2007, 24, 152-162.	4.3	13
83	Impact of overestimated ENSO variability in the relationship between ENSO and East Asian summer rainfall. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6200-6211.	3.3	13
84	Interannual Variations in Synoptic-Scale Disturbances over the Western North Pacific. Advances in Atmospheric Sciences, 2018, 35, 507-517.	4.3	12
85	Predictable and Unpredictable Components of the Summer East Asia–Pacific Teleconnection Pattern. Advances in Atmospheric Sciences, 2018, 35, 1372-1380.	4.3	12
86	Skillful Seasonal Forecasts of Summer Surface Air Temperature in Western China by Global Seasonal Forecast System Version 5. Advances in Atmospheric Sciences, 2018, 35, 955-964.	4.3	12
87	Impact of the MJO on the interannual variation of the Pacific–Japan mode of the East Asian summer monsoon. Climate Dynamics, 2019, 52, 3489-3501.	3.8	12
88	Subseasonal forecast barrier of the North Atlantic oscillation in S2S models during the extreme mei-yu rainfall event in 2020. Climate Dynamics, 2022, 58, 2913-2925.	3.8	12
89	Interdecadal changes on the seasonal prediction of the western North Pacific summer climate around the late 1970s and early 1990s. Climate Dynamics, 2016, 46, 2435-2448.	3.8	11
90	Improvements in Simulating the Relationship between ENSO and East Asian Summer Rainfall in the CMIP5 Models. Journal of Climate, 2017, 30, 4513-4525.	3.2	11

#	Article	IF	CITATIONS
91	Impact of summer rainfall over southernâ€central Europe on circumglobal teleconnection. Atmospheric Science Letters, 2016, 17, 258-262.	1.9	10
92	Promising prediction of the monsoon trough and its implication for tropical cyclone activity over the western North Pacific. Environmental Research Letters, 2017, 12, 074027.	5.2	10
93	Assessment of Upper Tropospheric Water Vapor Monthly Variation in Reanalyses With Nearâ€Global Homogenized 6.5â€Î¼m Radiances From Geostationary Satellites. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032695.	3.3	10
94	Precipitation Characteristics and Future Changes Over the Southern Slope of Tibetan Plateau Simulated by a Highâ€Resolution Global Nonhydrostatic Model. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033630.	3.3	10
95	Impact of the Scandinavian Pattern on Long-Lived Cold Surges over the South China Sea. Journal of Climate, 2022, 35, 1773-1785.	3.2	9
96	Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998. Journal of Geophysical Research, 2005, 110, .	3.3	8
97	Impact of Interannual Variation of Synoptic Disturbances on the Tracks and Landfalls of Tropical Cyclones over the Western North Pacific. Advances in Atmospheric Sciences, 2018, 35, 1469-1477.	4.3	8
98	Intermodel Diversity in the Zonal Location of the Climatological East Asian Westerly Jet Core in Summer and Association with Rainfall over East Asia in CMIP5 Models. Advances in Atmospheric Sciences, 2019, 36, 614-622.	4.3	8
99	Maintenance Mechanism for the Teleconnection Pattern over the High Latitudes of the Eurasian Continent in Summer. Journal of Climate, 2020, 33, 1017-1030.	3.2	8
100	Vertical Structure of Interannual Variability in Cross-Equatorial Flows over the Maritime Continent and Indian Ocean in Boreal Summer. Advances in Atmospheric Sciences, 2020, 37, 173-186.	4.3	8
101	Interannual Relationship between the West Asian and East Asian Jet Meridional Displacements in Summer. Journal of Climate, 2021, 34, 621-633.	3.2	8
102	Different Configurations of Interannual Variability of the Western North Pacific Subtropical High and East Asian Westerly Jet in Summer. Advances in Atmospheric Sciences, 2021, 38, 931-942.	4.3	8
103	Teleconnection between rainfall over South China and the East European Plain in July and August. Theoretical and Applied Climatology, 2014, 118, 185-194.	2.8	7
104	Predictability of winter rainfall in South China as demonstrated by the coupled models of ENSEMBLES. Advances in Atmospheric Sciences, 2014, 31, 779-786.	4.3	7
105	Interannual variability of precipitation in May over the South Asian monsoonal region. International Journal of Climatology, 2016, 36, 1724-1732.	3.5	7
106	Change in Tropical Cyclone Activity during the Break of the Western North Pacific Summer Monsoon in Early August. Journal of Climate, 2016, 29, 2457-2469.	3.2	6
107	Decadal Change of the Western North Pacific Summer Monsoon Break around 2002/03. Journal of Climate, 2018, 31, 177-193.	3.2	6
108	Preface to Special Issue on Climate Science for Service Partnership China. Advances in Atmospheric Sciences, 2018, 35, 897-898.	4.3	6

#	Article	IF	CITATIONS
109	Upper- and Lower-tropospheric Circulation Anomalies Associated with Interannual Variation of Pakistan Rainfall during Summer. Advances in Atmospheric Sciences, 2020, 37, 1179-1190.	4.3	6
110	Tropical Cyclones over the Western North Pacific Strengthen the East Asia—Pacific Pattern during Summer. Advances in Atmospheric Sciences, 2022, 39, 249-259.	4.3	6
111	Contrasts between the Interannual Variations of Extreme Rainfall over Western and Eastern Sichuan in Mid-summer. Advances in Atmospheric Sciences, 2022, 39, 999-1011.	4.3	6
112	Relative Impacts of the Orography and Land–Sea Contrast over the Indochina Peninsula on the Asian Summer Monsoon between Early and Late Summer. Journal of Climate, 2022, 35, 3037-3055.	3.2	6
113	Mesoscale Convective Systems Simulated by a Highâ€Resolution Global Nonhydrostatic Model Over the United States and China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
114	Differences in Annual Cycle and 30–60-Day Oscillations between the Summers of Strong and Weak Convection over the Tropical Western North Pacific. Journal of Climate, 2005, 18, 4649-4659.	3.2	5
115	Impact of the Horizontal Heat Flux in the Mixed Layer on an Extreme Heat Event in North China: A Case Study. Advances in Atmospheric Sciences, 2019, 36, 133-142.	4.3	5
116	Prediction of the Western North Pacific Subtropical High in Summer without Strong ENSO Forcing. Journal of Meteorological Research, 2021, 35, 101-112.	2.4	5
117	The Influence of ENSO on the Seasonal Convection Evolution and the Phase of 30-60-Day Oscillations during Boreal Summer. Journal of the Meteorological Society of Japan, 2005, 83, 1025-1040.	1.8	5
118	The characteristics of mesoscale convective systems generated over the <scp>Yunnan–Guizhou</scp> Plateau during the warm seasons. International Journal of Climatology, 2022, 42, 7321-7341.	3.5	5
119	Simulated change in the interannual variability of South Asian summer monsoon in the 21st century. Advances in Atmospheric Sciences, 2010, 27, 992-1002.	4.3	4
120	Possible Relationship between Korea Affecting Tropical Cyclone Activity and Pacific Decadal Oscillation in Summer. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 557-573.	2.3	4
121	Interdecadal changes in the interannual variability of the summer temperature over Northeast Asia. Journal of Climate, 2021, , 1-50.	3.2	4
122	Interdecadal variation of summer monsoon over the southern part of South Asia in midâ€1990s. International Journal of Climatology, 2017, 37, 1138-1146.	3.5	3
123	Interdecadal weakening of the cross-equatorial flows over the Maritime Continent during the boreal summer in the mid-1990s: drivers and physical processes. Climate Dynamics, 2021, 57, 55-72.	3.8	3
124	Decadal Change in the Influence of the Western North Pacific Subtropical High on Summer Rainfall over the Yangtze River Basin in the Late 1970s. Advances in Atmospheric Sciences, 2021, 38, 1823-1834.	4.3	3
125	Break Events of the Western North Pacific Summer Monsoon during 1979–2018. Journal of Climate, 2022, 35, 463-477.	3.2	3
126	Impact of sea surface temperature trend on late summer Asian rainfall in the twentieth century. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4256-4266.	3.3	2

#	Article	IF	CITATIONS
127	Seesaw Pattern of Rainfall Anomalies between the Tropical Western North Pacific and Central Southern China during Late Summer. Advances in Atmospheric Sciences, 2019, 36, 261-270.	4.3	2
128	Influence of Tropical SSTs on the Interannual Variation of the Summer Monsoon Break over the Western North Pacific. Journal of Climate, 2019, 32, 2807-2821.	3.2	2
129	Projected Increase in Probability of East Asian Heavy Rainy Summer in the 21st Century by CMIP5 Models. Advances in Atmospheric Sciences, 2021, 38, 1635-1650.	4.3	2
130	The U.K.–China Climate Science to Service Partnership. Bulletin of the American Meteorological Society, 2021, 102, E1563-E1578.	3.3	2
131	Different Impacts of Intraseasonal Oscillations on Precipitation in Southeast China between Early and Late Summers. Advances in Atmospheric Sciences, 0, , 1.	4.3	2
132	Revisiting the second EOF mode of interannual variation in summer rainfall over East China. Advances in Atmospheric Sciences, 2016, 33, 121-134.	4.3	1
133	The weakening of autumn drought intensity in Korea after late 1990s. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 70, 1429800.	1.7	1
134	Has substantial sea ice loss along the Siberian coast contributed to the 2020/2021 winter cold wave in China?. International Journal of Climatology, 2022, 42, 6685-6698.	3.5	1
135	A decadal intensification in the modulation of spring western tropical Atlantic sea surface temperature to the following winter ENSO after the mid-1980s. Climate Dynamics, 2022, 59, 3643-3655.	3.8	1