
## Vicky L Van Santen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2408321/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Intestinal Tropism of an Infectious Bronchitis Virus Isolate Not Explained by Spike Protein Binding<br>Specificity. Avian Diseases, 2019, 64, 23.                                                                                                                                                          | 0.4 | 4         |
| 2  | Limited Protection Conferred by Recombinant Newcastle Disease Virus Expressing Infectious<br>Bronchitis Spike Protein. Avian Diseases, 2019, 64, 53.                                                                                                                                                       | 0.4 | 7         |
| 3  | Infectious Bronchitis Virus Population Structure Defines Immune Response and Protection. Avian Diseases, 2019, 64, 60.                                                                                                                                                                                     | 0.4 | 12        |
| 4  | Infectious Bronchitis Virus Vaccination at Day 1 of Age Further Limits Cross Protection. Avian Diseases, 2019, 63, 302.                                                                                                                                                                                    | 0.4 | 10        |
| 5  | Two class I genes of the chicken MHC have different functions: BF1 is recognized by NK cells while BF2 is recognized by CTLs. Immunogenetics, 2018, 70, 599-611.                                                                                                                                           | 1.2 | 28        |
| 6  | Infectious Bronchitis Virus S2 of 4/91 Expressed from Recombinant Virus Does Not Protect Against<br>Ark-Type Challenge. Avian Diseases, 2017, 61, 397-401.                                                                                                                                                 | 0.4 | 8         |
| 7  | Protection against infectious bronchitis virus by spike ectodomain subunit vaccine. Vaccine, 2017, 35,<br>5864-5871.                                                                                                                                                                                       | 1.7 | 23        |
| 8  | Kidney Cell–Adapted Infectious Bronchitis ArkDPI Vaccine is Stable and Protective. Avian Diseases, 2017,<br>61, 221-228.                                                                                                                                                                                   | 0.4 | 5         |
| 9  | Inactivation of Avian Influenza Virus in Nonpelleted Chicken Feed. Avian Diseases, 2016, 60, 846-849.                                                                                                                                                                                                      | 0.4 | 5         |
| 10 | Kidney Cell–Adapted Infectious Bronchitis Virus Arkansas Delmarva Poultry Industry Vaccine Confers<br>Effective Protection Against Challenge. Avian Diseases, 2016, 60, 418-423.                                                                                                                           | 0.4 | 8         |
| 11 | Cross-Protection by Infectious Bronchitis Viruses Under Controlled Experimental Conditions. Avian Diseases, 2015, 59, 532-536.                                                                                                                                                                             | 0.4 | 13        |
| 12 | Effects of Adaptation of Infectious Bronchitis Virus Arkansas Attenuated Vaccine to Embryonic Kidney<br>Cells. Avian Diseases, 2015, 59, 106-113.                                                                                                                                                          | 0.4 | 17        |
| 13 | Combined infectious bronchitis virus Arkansas and Massachusetts serotype vaccination suppresses replication of Arkansas vaccine virus. Avian Pathology, 2015, 44, 408-420.                                                                                                                                 | 0.8 | 3         |
| 14 | Generation and Characterization of the First Immortalized Alpaca Cell Line Suitable for Diagnostic and Immunization Studies. PLoS ONE, 2014, 9, e105643.                                                                                                                                                   | 1.1 | 13        |
| 15 | S1 of Distinct IBV Population Expressed from Recombinant Adenovirus Confers Protection Against<br>Challenge. Avian Diseases, 2014, 58, 211-215.                                                                                                                                                            | 0.4 | 17        |
| 16 | Comparison of Vaccine Subpopulation Selection, Viral Loads, Vaccine Virus Persistence in Trachea and<br>Cloaca, and Mucosal Antibody Responses After Vaccination with Two Different Arkansas Delmarva<br>Poultry Industry–Derived Infectious Bronchitis Virus Vaccines. Avian Diseases, 2014, 58, 102-110. | 0.4 | 13        |
| 17 | Infectious Bronchitis Virus S2 Expressed from Recombinant Virus Confers Broad Protection Against<br>Challenge. Avian Diseases, 2014, 58, 83-89.                                                                                                                                                            | 0.4 | 42        |
| 18 | Efficient heterologous antigen gene delivery and expression by a replication-attenuated BoHV-4-based vaccine vector. Vaccine, 2013, 31, 3906-3914.                                                                                                                                                         | 1.7 | 9         |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Genetic Diversity and Selection Regulates Evolution of Infectious Bronchitis Virus. Avian Diseases, 2012, 56, 449-455.                                                                                          | 0.4 | 55        |
| 20 | The Proportion of Specific Viral Subpopulations in Attenuated Arkansas Delmarva Poultry Industry<br>Infectious Bronchitis Vaccines Influences Vaccination Outcome. Avian Diseases, 2012, 56, 642-653.           | 0.4 | 21        |
| 21 | Infectious Bronchitis Virus Subpopulations in Vaccinated Chickens after Challenge. Avian Diseases<br>Digest, 2012, 7, e18-e19.                                                                                  | 0.0 | 0         |
| 22 | Invited Review: Genetic Diversity and Selection Regulates Evolution of Infectious Bronchitis Virus.<br>Avian Diseases Digest, 2012, 7, e1-e2.                                                                   | 0.0 | 1         |
| 23 | The Proportion of Specific Viral Subpopulations in Attenuated Arkansas Delmarva Poultry Industry<br>Infectious Bronchitis Vaccines Influences Vaccination Outcome. Avian Diseases Digest, 2012, 7, e3-e4.       | 0.0 | 0         |
| 24 | Infectious Bronchitis Virus Subpopulations in Vaccinated Chickens After Challenge. Avian Diseases, 2012, 56, 501-508.                                                                                           | 0.4 | 52        |
| 25 | Effects of chicken anaemia virus and infectious bursal disease virus-induced immunodeficiency on infectious bronchitis virus replication and genotypic drift. Avian Pathology, 2012, 41, 451-458.               | 0.8 | 24        |
| 26 | Infectious Bronchitis Virus in Testicles and Venereal Transmission. Avian Diseases Digest, 2011, 6, e13-e14.                                                                                                    | 0.0 | 1         |
| 27 | Avian Influenza Adenovirus-Vectored <i>In Ovo</i> Vaccination: Target Embryo Tissues and Combination with Marek's Disease Vaccine. Avian Diseases, 2011, 55, 667-673.                                           | 0.4 | 5         |
| 28 | Infectious Bronchitis Virus in Testicles and Venereal Transmission. Avian Diseases, 2011, 55, 255-258.                                                                                                          | 0.4 | 33        |
| 29 | Bovine herpesvirus 4 immediate early 2 (Rta) gene is an essential gene and is duplicated in bovine<br>herpesvirus 4 isolate U. Veterinary Microbiology, 2011, 148, 219-231.                                     | 0.8 | 9         |
| 30 | Host Intraspatial Selection of Infectious Bronchitis Virus Populations. Avian Diseases Digest, 2010, 5, e5-e6.                                                                                                  | 0.0 | 0         |
| 31 | Integration of bovine herpesvirus 4 genome into cultured persistently infected host cell genome.<br>Virology Journal, 2010, 7, 246.                                                                             | 1.4 | 1         |
| 32 | Host Intraspatial Selection of Infectious Bronchitis Virus Populations. Avian Diseases, 2010, 54, 807-813.                                                                                                      | 0.4 | 46        |
| 33 | Organization and sequence of four flagellin-encoding genes of <i>Edwardsiella ictaluri</i> .<br>Aquaculture Research, 2009, 40, 1135-1147.                                                                      | 0.9 | 6         |
| 34 | Molecular characteristics of an immobilization antigen gene of the fish-parasitic<br>protozoan <i>Ichthyophthirius multifiliis</i> strain ARS-6. Aquaculture Research, 2009, 40, 1884-1892.                     | 0.9 | 5         |
| 35 | Effects of Chicken Anemia Virus and Infectious Bursal Disease Virus in Commercial Chickens. Avian<br>Diseases, 2009, 53, 94-102.                                                                                | 0.4 | 25        |
| 36 | Infectious Bronchitis Virus in the Chicken Harderian Gland and Lachrymal Fluid: Viral Load,<br>Infectivity, Immune Cell Responses, and Effects of Viral Immunodeficiency. Avian Diseases, 2008, 52,<br>608-617. | 0.4 | 57        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Rapid selection in chickens of subpopulations within ArkDPI-derived infectious bronchitis virus vaccines. Avian Pathology, 2008, 37, 293-306.                                                           | 0.8 | 64        |
| 38 | Herpes Simplex Virus Type 1 ICP27 Regulates Expression of a Variant, Secreted Form of Glycoprotein C by an Intron Retention Mechanism. Journal of Virology, 2008, 82, 7443-7455.                        | 1.5 | 43        |
| 39 | Multiplex-PCR for simultaneous detection of 3 bacterial fish pathogens, Flavobacterium columnare,<br>Edwardsiella ictaluri, and Aeromonas hydrophila. Diseases of Aquatic Organisms, 2007, 74, 199-208. | 0.5 | 52        |
| 40 | Pathogenesis of Infectious Bronchitis Virus in Vaccinated Chickens of Two Different Major<br>HistocompatibilityBComplex Genotypes. Avian Diseases, 2007, 51, 758-763.                                   | 0.4 | 23        |
| 41 | Biological Characteristics of Chicken Anemia Virus Regenerated from Clinical Specimen by PCR. Avian Diseases, 2007, 51, 66-77.                                                                          | 0.4 | 12        |
| 42 | A 10â€Baseâ€Pair Deletion in the Gene Encoding Platelet Glycoprotein IIb Associated with Glanzmann<br>Thrombasthenia in a Horse. Journal of Veterinary Internal Medicine, 2007, 21, 196-198.            | 0.6 | 20        |
| 43 | A 10-base-pair Deletion in the Gene Encoding Platelet Glycoprotein lib Associated With Glanzmann<br>Thrombasthenia in a Horse. Journal of Veterinary Internal Medicine, 2007, 21, 196.                  | 0.6 | 8         |
| 44 | Characterization of the cDNA Encoding αIlb and β3 in Normal Horses and Two Horses with Glanzmann Thrombasthenia. Veterinary Pathology, 2006, 43, 78-82.                                                 | 0.8 | 27        |
| 45 | Epidemiological and experimental evidence for immunodeficiency affecting avian infectious<br>bronchitis. Avian Pathology, 2006, 35, 455-464.                                                            | 0.8 | 64        |
| 46 | Analysis of 16S-23S intergenic spacer regions of the rRNA operons in Edwardsiella ictaluri and<br>Edwardsiella tarda isolates from fish. Journal of Applied Microbiology, 2005, 99, 657-669.            | 1.4 | 31        |
| 47 | Potential Secondary Pathogenic Role for Bovine Herpesvirus 4. Journal of Clinical Microbiology, 2005, 43, 3421-3426.                                                                                    | 1.8 | 36        |
| 48 | Oral Infection with Chicken Anemia Virus in 4-Wk Broiler Breeders: Lack of Effect of Major<br>HistocompatibilityBComplex Genotype. Avian Diseases, 2005, 49, 482-487.                                   | 0.4 | 18        |
| 49 | Real-time quantitative PCR-based serum neutralization test for detection and titration of neutralizing antibodies to chicken anemia virus. Journal of Virological Methods, 2004, 115, 123-135.          | 1.0 | 24        |
| 50 | Pathogenesis of Chicken Anemia Virus: Comparison of the Oral and the Intramuscular Routes of<br>Infection. Avian Diseases, 2004, 48, 494-504.                                                           | 0.4 | 35        |
| 51 | Interaction of a green recombinant bovine herpesvirus 4 with in vitro-produced bovine embryos.<br>Veterinary Research Communications, 2003, 27, 415-424.                                                | 0.6 | 6         |
| 52 | Potential of bovine herpesvirus 4 as a gene delivery vector. Journal of Virological Methods, 2002, 101,<br>49-61.                                                                                       | 1.0 | 74        |
| 53 | Genetic Characterization of Chicken Anemia Virus from Commercial Broiler Chickens in Alabama.<br>Avian Diseases, 2001, 45, 373.                                                                         | 0.4 | 42        |
| 54 | A bovine macrophage cell line supports bovine herpesvirus-4 persistent infection. Journal of General<br>Virology, 2001, 82, 1181-1185.                                                                  | 1.3 | 42        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Transposon Mutagenesis of Mycoplasma gallisepticum by Conjugation with Enterococcus faecalis and Determination of Insertion Site by Direct Genomic Sequencing. Plasmid, 2000, 44, 191-195.          | 0.4 | 16        |
| 56 | GAA Trinucleotide Repeat Region Regulates M9/pMGA Gene Expression in Mycoplasma gallisepticum.<br>Infection and Immunity, 2000, 68, 871-876.                                                        | 1.0 | 48        |
| 57 | Establishment of a cell line persistently infected with bovine herpesvirus-4 by use of a recombinant virus. Microbiology (United Kingdom), 2000, 81, 1807-1814.                                     | 0.7 | 25        |
| 58 | Characterization of a bovine herpesvirus 4(BHV-4) 1.1-kb RNA and its transactivation by BHV-4 immediate-early 2 gene product. Archives of Virology, 1998, 143, 2391-2412.                           | 0.9 | 6         |
| 59 | A Protein (M9) Associated with Monoclonal Antibody-Mediated Agglutination of <i>Mycoplasma gallisepticum</i> Is a Member of the pMGA Family. Infection and Immunity, 1998, 66, 5570-5575.           | 1.0 | 11        |
| 60 | Expression Kinetics and Mapping of the Thymidine Kinase Transcript and an Immediate-Early Transcript<br>from Channel Catfish Virus. Journal of Virology, 1998, 72, 3900-3906.                       | 1.5 | 18        |
| 61 | Bovine herpesvirus 4: genomic organization and relationship with two other gammaherpesviruses,<br>Epstein-Barr virus and herpesvirus saimiri. Veterinary Microbiology, 1996, 53, 79-89.             | 0.8 | 30        |
| 62 | Interaction of bovine herpesvirus 4 (BHV-4) immediate early 2 gene product with BHV-4 thymidine<br>kinase promoter-regulatory region. Journal of General Virology, 1995, 76, 2433-2445.             | 1.3 | 12        |
| 63 | Analysis of bovine herpesvirus 4 genomic regions located outside the conserved gammaherpesvirus<br>gene blocks. Journal of General Virology, 1995, 76, 1835-1841.                                   | 1.3 | 56        |
| 64 | Immediate-early transcription from the channel catfish virus genome: characterization of two immediate-early transcripts. Journal of Virology, 1995, 69, 3161-3166.                                 | 1.5 | 24        |
| 65 | Development and Application of a Polymerase Chain Reaction Assay for Mycoplasma synoviae. Avian<br>Diseases, 1993, 37, 829.                                                                         | 0.4 | 81        |
| 66 | Cloning and Partial Sequence Analysis of a Mycoplasma synoviae DNA Fragment Encoding Epitopes<br>Shared with the Major Adhesin P1 Protein of Mycoplasma pneumoniae. Avian Diseases, 1993, 37, 1105. | 0.4 | 4         |
| 67 | Characterization of a bovine herpesvirus 4 immediate-early RNA encoding a homolog of the Epstein-Barr virus R transactivator. Journal of Virology, 1993, 67, 773-784.                               | 1.5 | 54        |
| 68 | Cloning and Mapping of <i>Eco</i> Rl, <i>Hin</i> dIII, and <i>Pst</i> I<br>Fragments of Bovine Herpesvirus 4 (DN-599) Genome. Intervirology, 1992, 34, 44-52.                                       | 1.2 | 8         |
| 69 | Immediate-early, early, and late RNAs in bovine herpesvirus-4-infected cells. Virology, 1992, 191, 909-920.                                                                                         | 1.1 | 17        |
| 70 | Characterization of the bovine herpesvirus 4 major immediate-early transcript Journal of Virology,<br>1991, 65, 5211-5224.                                                                          | 1.5 | 61        |
| 71 | Direct, sequence-specific binding of the human U1-70K ribonucleoprotein antigen protein to loop I of<br>U1 small nuclear RNA Molecular and Cellular Biology, 1989, 9, 4179-4186.                    | 1.1 | 94        |
| 72 | Nucleotide sequences of two soybean U1 snRNA genes. Nucleic Acids Research, 1988, 16, 4176-4176.                                                                                                    | 6.5 | 26        |

5

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Loop I of U1 small nuclear RNA is the only essential RNA sequence for binding of specific U1 small nuclear ribonucleoprotein particle proteins Molecular and Cellular Biology, 1988, 8, 4787-4791.                                   | 1.1 | 67        |
| 74 | Splicing of plant pre-mRN As in animal systems and vice versa. Gene, 1987, 56, 253-265.                                                                                                                                              | 1.0 | 74        |
| 75 | Alternative splicing of SV40 early pre-mRNAin vitro. Nucleic Acids Research, 1986, 14, 9911-9926.                                                                                                                                    | 6.5 | 32        |
| 76 | The two intervening sequences of human beta- and gamma-globin pre-mRNAs are excised in a preferred<br>temporal order in vitro EMBO Journal, 1985, 4, 1991-1996.                                                                      | 3.5 | 24        |
| 77 | Nucleotide sequence, evolution, and expression of the fetal globin gene of the spider monkey Ateles<br>geoffroyi Proceedings of the National Academy of Sciences of the United States of America, 1985, 82,<br>6985-6989.            | 3.3 | 18        |
| 78 | Deletion Analysis of the Human ?-Globin IVS2: Sequence Requirements for RNA Splicing. Annals of the<br>New York Academy of Sciences, 1985, 445, 10-19.                                                                               | 1.8 | 2         |
| 79 | Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. Journal of Virology, 1984, 51, 411-419.                                                    | 1.5 | 356       |
| 80 | Simple repeat array in Epstein-Barr virus DNA encodes part of the Epstein-Barr nuclear antigen.<br>Science, 1983, 220, 1396-1398.                                                                                                    | 6.0 | 168       |
| 81 | RNA encoded by the IR1-U2 region of Epstein-Barr virus DNA in latently infected, growth-transformed cells. Journal of Virology, 1983, 46, 424-433.                                                                                   | 1.5 | 66        |
| 82 | The Biology and Chemistry of Epstein-Barr Virus. Journal of Infectious Diseases, 1982, 146, 506-517.                                                                                                                                 | 1.9 | 90        |
| 83 | Biochemistry of Epstein—Barr Virus. , 1982, , 105-150.                                                                                                                                                                               |     | 10        |
| 84 | Simple repeat sequence in Epstein-Barr virus DNA is transcribed in latent and productive infections.<br>Journal of Virology, 1982, 44, 311-320.                                                                                      | 1.5 | 109       |
| 85 | Epstein-Barr virus RNA VII: size and direction of transcription of virus-specified cytoplasmic RNAs in a transformed cell line Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 1930-1934. | 3.3 | 187       |
| 86 | Epstein-Barr virus RNA. VI. Viral RNA in restringently and abortively infected Raji cells. Journal of<br>Virology, 1981, 38, 649-660.                                                                                                | 1.5 | 68        |