Hiroyuki Miyamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2408202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aerobic Oxidation of Alcohols at Room Temperature and Atmospheric Conditions Catalyzed by Reusable Gold Nanoclusters Stabilized by the Benzene Rings of Polystyrene Derivatives. Angewandte Chemie - International Edition, 2007, 46, 4151-4154.	7.2	343
2	Powerful Amide Synthesis from Alcohols and Amines under Aerobic Conditions Catalyzed by Gold or Gold/Iron, -Nickel or -Cobalt Nanoparticles. Journal of the American Chemical Society, 2011, 133, 18550-18553.	6.6	266
3	Spin Trapping of Auâ^'H Intermediate in the Alcohol Oxidation by Supported and Unsupported Gold Catalysts. Journal of the American Chemical Society, 2009, 131, 7189-7196.	6.6	234
4	Discovery of a Metalloenzyme-like Cooperative Catalytic System of Metal Nanoclusters and Catechol Derivatives for the Aerobic Oxidation of Amines. Journal of the American Chemical Society, 2012, 134, 13970-13973.	6.6	188
5	Chiral metal nanoparticle-catalyzed asymmetric C–C bond formation reactions. Chemical Society Reviews, 2014, 43, 1450-1461.	18.7	157
6	Remarkable Effect of Bimetallic Nanocluster Catalysts for Aerobic Oxidation of Alcohols: Combining Metals Changes the Activities and the Reaction Pathways to Aldehydes/Carboxylic Acids or Esters. Journal of the American Chemical Society, 2010, 132, 15096-15098.	6.6	156
7	Aerobic oxidative esterification of alcohols catalyzed by polymer-incarcerated gold nanoclusters under ambient conditions. Green Chemistry, 2010, 12, 776.	4.6	133
8	Polymer-Incarcerated Chiral Rh/Ag Nanoparticles for Asymmetric 1,4-Addition Reactions of Arylboronic Acids to Enones: Remarkable Effects of Bimetallic Structure on Activity and Metal Leaching. Journal of the American Chemical Society, 2012, 134, 16963-16966.	6.6	111
9	A Goldâ€Immobilized Microchannel Flow Reactor for Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie - International Edition, 2009, 48, 4744-4746.	7.2	102
10	Selective imine formation from alcohols and amines catalyzed by polymer incarcerated gold/palladium alloy nanoparticles with molecular oxygen as an oxidant. Chemical Communications, 2013, 49, 355-357.	2.2	100
11	Chiral Metal Nanoparticle Systems as Heterogeneous Catalysts beyond Homogeneous Metal Complex Catalysts for Asymmetric Addition of Arylboronic Acids to α,β-Unsaturated Carbonyl Compounds. Journal of the American Chemical Society, 2015, 137, 6616-6623.	6.6	98
12	Polysilane-Immobilized Rh–Pt Bimetallic Nanoparticles as Powerful Arene Hydrogenation Catalysts: Synthesis, Reactions under Batch and Flow Conditions and Reaction Mechanism. Journal of the American Chemical Society, 2018, 140, 11325-11334.	6.6	95
13	Highly Active, Immobilized Ruthenium Catalysts for Oxidation of Alcohols to Aldehydes and Ketones. Preparation and Use in Both Batch and Flow Systems. Journal of the American Chemical Society, 2005, 127, 9251-9254.	6.6	90
14	Tandem Oxidative Processes Catalyzed by Polymer-Incarcerated Multimetallic Nanoclusters with Molecular Oxygen. Accounts of Chemical Research, 2014, 47, 1054-1066.	7.6	90
15	Aerobic Oxidation of Hydroquinone Derivatives Catalyzed by Polymerâ€Incarcerated Platinum Catalyst. Angewandte Chemie - International Edition, 2008, 47, 8093-8095.	7.2	89
16	Gold–platinum bimetallic clusters for aerobic oxidation of alcohols under ambient conditions. Chemical Communications, 2008, , 2031.	2.2	89
17	A Cooperative Catalytic System of Platinum/Iridium Alloyed Nanoclusters and a Dimeric Catechol Derivative: An Efficient Synthesis of Quinazolines Through a Sequential Aerobic Oxidative Process. Advanced Synthesis and Catalysis, 2012, 354, 2899-2904.	2.1	86
18	Aerobic Oxidation of Alcohols under Mild Conditions Catalyzed by Novel Polymerâ€Incarcerated, Carbonâ€Stabilized Gold Nanoclusters. Advanced Synthesis and Catalysis, 2008, 350, 1996-2000.	2.1	75

#	Article	IF	CITATIONS
19	Copolymer-Incarcerated Nickel Nanoparticles with <i>N</i> -Heterocyclic Carbene Precursors as Active Cross-Linking Agents for Corriu–Kumada–Tamao Reaction. Journal of the American Chemical Society, 2013, 135, 10602-10605.	6.6	75
20	Polymer-Incarcerated Goldâ `Palladium Nanoclusters with Boron on Carbon: A Mild and Efficient Catalyst for the Sequential Aerobic Oxidationâ `Michael Addition of 1,3-Dicarbonyl Compounds to Allylic Alcohols. Journal of the American Chemical Society, 2011, 133, 3095-3103.	6.6	70
21	Polymerâ€incarcerated metal(0) cluster catalysts. Chemical Record, 2010, 10, 271-290.	2.9	64
22	Size of Gold Nanoparticles Driving Selective Amide Synthesis through Aerobic Condensation of Aldehydes and Amines. Angewandte Chemie - International Edition, 2015, 54, 7564-7567.	7.2	62
23	Cellulose-supported chiral rhodium nanoparticles as sustainable heterogeneous catalysts for asymmetric carbon–carbon bond-forming reactions. Chemical Science, 2015, 6, 6224-6229.	3.7	59
24	Chiral Ligand-Modified Metal Nanoparticles as Unique Catalysts for Asymmetric C–C Bond-Forming Reactions: How Are Active Species Generated?. ACS Catalysis, 2016, 6, 7979-7988.	5.5	59
25	Aerobic Oxidation of Amines Catalyzed by Polymer-Incarcerated Au Nanoclusters: Effect of Cluster Size and Cooperative Functional Groups in the Polymer. Bulletin of the Chemical Society of Japan, 2011, 84, 588-599.	2.0	58
26	Enhanced acyl radical formation in the Au nanoparticle-catalysed aldehydeoxidation. Chemical Communications, 2010, 46, 145-147.	2.2	55
27	Facile Preparation of 2‣ubstituted Benzoxazoles and Benzothiazoles <i>via</i> Aerobic Oxidation of Phenolic and Thiophenolic Imines Catalyzed by Polymerâ€Incarcerated Platinum Nanoclusters. Advanced Synthesis and Catalysis, 2011, 353, 3085-3089.	2.1	53
28	Polymer Incarcerated Gold Catalyzed Aerobic Oxidation of Hydroquinones and Their Derivatives. Chemistry Letters, 2008, 37, 360-361.	0.7	52
29	Chiral Nanoparticles/Lewis Acids as Cooperative Catalysts for Asymmetric 1,4â€Addition of Arylboronic Acids to α,βâ€Unsaturated Amides. Angewandte Chemie - International Edition, 2016, 55, 8058-8061.	7.2	50
30	Polymer Incarcerated Ruthenium Catalyst for Oxidation of Alcohols with Molecular Oxygen. Advanced Synthesis and Catalysis, 2007, 349, 531-534.	2.1	48
31	Synergistic cascade catalysis by metal nanoparticles and Lewis acids in hydrogen autotransfer. Chemical Science, 2015, 6, 1719-1727.	3.7	45
32	Powerful Continuousâ€Flow Hydrogenation by using Poly(dimethyl)silaneâ€&upported Palladium Catalysts. ChemCatChem, 2015, 7, 4025-4029.	1.8	44
33	Polymer-micelle incarcerated ruthenium catalysts for oxidation of alcohols and sulfides. Tetrahedron, 2005, 61, 12177-12185.	1.0	41
34	A heterogeneous layered bifunctional catalyst for the integration of aerobic oxidation and asymmetric $C\hat{a}\in C$ bond formation. Chemical Communications, 2013, 49, 9917.	2.2	41
35	Chiral Nanoparticles/Lewis Acids as Cooperative Catalysts for Asymmetric 1,4â€Addition of Arylboronic Acids to α,βâ€Unsaturated Amides. Angewandte Chemie, 2016, 128, 8190-8193.	1.6	41
36	Direct Amidation from Alcohols and Amines through a Tandem Oxidation Process Catalyzed by Heterogeneousâ€Polymerâ€Incarcerated Gold Nanoparticles under Aerobic Conditions. Chemistry - an Asian Journal, 2013, 8, 2614-2626.	1.7	40

Hiroyuki Miyamura

#	Article	IF	CITATIONS
37	Asymmetric Arylation of Imines Catalyzed by Heterogeneous Chiral Rhodium Nanoparticles. Organic Letters, 2016, 18, 2716-2718.	2.4	38
38	Rhodium-catalyzed asymmetric 1,4-addition reactions of aryl boronic acids with nitroalkenes: reaction mechanism and development of homogeneous and heterogeneous catalysts. Chemical Science, 2017, 8, 8362-8372.	3.7	38
39	In situ coupled oxidation cycle catalyzed by highly active and reusable Pt-catalysts: dehydrogenative oxidation reactions in the presence of a catalytic amount of o-chloranil using molecular oxygen as the terminal oxidant. Chemical Communications, 2010, 46, 8052.	2.2	36
40	Multiphase Flow Systems for Selective Aerobic Oxidation of Alcohols Catalyzed by Bimetallic Nanoclusters. Journal of Flow Chemistry, 2012, 2, 1-4.	1.2	33
41	Direct Synthesis of Hydroquinones from Quinones through Sequential and Continuousâ€Flow Hydrogenationâ€Đerivatization Using Heterogeneous Au–Pt Nanoparticles as Catalysts. Angewandte Chemie - International Edition, 2019, 58, 9220-9224.	7.2	29
42	Integrated Process of Aerobic Oxidation–Olefination–Asymmetric CC Bond Formation Catalyzed by Robust Heterogeneous Gold/Palladium and Chirally Modified Rhodium Nanoparticles. Advanced Synthesis and Catalysis, 2015, 357, 3815-3819.	2.1	28
43	Rateâ€Acceleration in Goldâ€Nanoclusterâ€Catalyzed Aerobic Oxidative Esterification Using 1,2―and 1,3â€Diols and Their Derivatives. Chemistry - an Asian Journal, 2011, 6, 621-627.	⁵ 1.7	27
44	Heterogeneous Supramolecular Catalysis through Immobilization of Anionic M ₄ L ₆ Assemblies on Cationic Polymers. Journal of the American Chemical Society, 2020, 142, 19327-19338.	6.6	27
45	Copper-catalyzed, aerobic oxidative cross-coupling of alkynes with arylboronic acids: remarkable selectivity in 2,6-lutidine media. Organic and Biomolecular Chemistry, 2011, 9, 6208.	1.5	25
46	Chiral Rhodium Nanoparticle-Catalyzed Asymmetric Arylation Reactions. Accounts of Chemical Research, 2020, 53, 2950-2963.	7.6	21
47	Integration of aerobic oxidation and intramolecular asymmetric aza-Friedel–Crafts reactions with a chiral bifunctional heterogeneous catalyst. Chemical Science, 2017, 8, 1356-1359.	3.7	20
48	Selective Lactam Formation from Amino Alcohols Using Polymerâ€Incarcerated Gold and Gold/Cobalt Nanoparticles as Catalysts under Aerobic Oxidative Conditions. Asian Journal of Organic Chemistry, 2012, 1, 319-321.	1.3	19
49	A Polystyreneâ€Supported Phaseâ€Transfer Catalyst for Asymmetric Michael Addition of Glycineâ€Derived Imines to α,βâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2017, 359, 2897-2900.	2.1	18
50	α-Hydroxylation of 1,3-Dicarbonyl Compounds Catalyzed by Polymer-incarcerated Gold Nanoclusters with Molecular Oxygen. Chemistry Letters, 2012, 41, 976-978.	0.7	17
51	Heterogeneous Rh and Rh/Ag bimetallic nanoparticle catalysts immobilized on chiral polymers. Chemical Science, 2019, 10, 7619-7626.	3.7	17
52	<i>N</i> -Heterocyclic Carbene Coordinated Heterogeneous Pd Nanoparticles as Catalysts for Suzuki–Miyaura Coupling. Chemistry Letters, 2016, 45, 837-839.	0.7	14
53	Water as a catalytic switch in the oxidation of aryl alcohols by polymer incarcerated rhodium nanoparticles. Catalysis Science and Technology, 2017, 7, 3985-3998.	2.1	14
54	Reaction Rate Acceleration of Cooperative Catalytic Systems: Metal Nanoparticles and Lewis Acids in Arene Hydrogenation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14

#	Article	IF	CITATIONS
55	Asymmetric 1,4â€Addition of Arylboronic Acids to β,γâ€Unsaturated αâ€Ketoesters using Heterogeneous Chiral Metal Nanoparticle Systems. Advanced Synthesis and Catalysis, 2020, 362, 353-359.	2.1	13
56	Oxidative transformation of N-substituted 2-aminophenols to 2-substituted benzoxazoles catalyzed by polymer-incarcerated and carbon-stabilized platinum nanoclusters. Canadian Journal of Chemistry, 2012, 90, 306-313.	0.6	11
57	Selfâ€Assembled Nanocomposite Organic Polymers with Aluminum and Scandium as Heterogeneous Water ompatible Lewis Acid Catalysts. Angewandte Chemie - International Edition, 2015, 54, 10559-10563.	7.2	11
58	Preparation of polymer incarcerated gold nanocluster catalysts (PI-Au) and their application to aerobic oxidation reactions of boronic acids, alcohols, and silyl enol ethers. Tetrahedron, 2014, 70, 6039-6049.	1.0	9
59	Direct Synthesis of Hydroquinones from Quinones through Sequential and Continuousâ€Flow Hydrogenationâ€Derivatization Using Heterogeneous Au–Pt Nanoparticles as Catalysts. Angewandte Chemie, 2019, 131, 9318-9322.	1.6	4
60	Highly Selective Reductive Cross-Amination between Aniline or Nitroarene Derivatives and Alkylamines Catalyzed by Polysilane-Immobilized Rh/Pt Bimetallic Nanoparticles. Synlett, 2019, 30, 387-392.	1.0	4
61	Lewis acid-driven reaction pathways in synergistic cooperative catalysis over gold/palladium bimetallic nanoparticles for hydrogen autotransfer reaction between amide and alcohol. Chinese Journal of Catalysis, 2016, 37, 1662-1668.	6.9	3
62	Simple Homopolymer-incarcerated Gold Nanoclusters Prepared by Self-assembled Encapsulation with Aluminum Reagents as Crosslinkers: Catalysts for Aerobic Oxidation Reactions. Chemistry Letters, 2015, 44, 50-52.	0.7	2
63	Inside Cover: Aerobic Oxidation of Alcohols at Room Temperature and Atmospheric Conditions Catalyzed by Reusable Gold Nanoclusters Stabilized by the Benzene Rings of Polystyrene Derivatives (Angew. Chem. Int. Ed. 22/2007). Angewandte Chemie - International Edition, 2007, 46, 3992-3992.	7.2	1
64	Aerobic Oxidation of Alcohols and Direct Oxidative Ester Formation Catalyzed by Polymer-Immobilized Bimetallic Nanocluster Catalysts. Kobunshi Ronbunshu, 2011, 68, 493-508.	0.2	1
65	Highly Active, Immobilized Ruthenium Catalysts for Oxidation of Alcohols to Aldehydes and Ketones. Preparation and Use in Both Batch and Flow Systems ChemInform, 2005, 36, no.	0.1	0
66	Front Cover Picture: A Polystyreneâ€Supported Phaseâ€Transfer Catalyst for Asymmetric Michael Addition of Glycineâ€Derived Imines to α,βâ€Unsaturated Ketones (Adv. Synth. Catal. 17/2017). Advanced Synthesis and Catalysis, 2017, 359, 2895-2895.	2.1	0
67	Development of Highly Functionalized Metal Nanocluster Catalysts for Fine Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1238-1252.	0.0	0
68	Polymer Immobilized Bimetallic Nanoparticle Catalysts for Selective Hydrogenation of Quinones and Integration of Quinone-hydrogenation and Its Derivatization Using Sequential and Continuous-flow Systems. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 232-239.	0.0	0
69	Reaction Rate Acceleration of Cooperative Catalytic Systems: Metal Nanoparticles and Lewis Acids in Arene Hydrogenation. Angewandte Chemie, 0, , .	1.6	0