
Joel T Haas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2408105/publications.pdf Version: 2024-02-01

ΙΟΕΙ Τ ΗΛΛΟ

#	Article	IF	CITATIONS
1	Apolipoprotein F is reduced in humans with steatosis and controls plasma triglycerideâ€rich lipoprotein metabolism. Hepatology, 2023, 77, 1287-1302.	3.6	3
2	Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome. Circulation Research, 2022, 130, 80-95.	2.0	9
3	The hepatocyte insulin receptor is required to program the liver clock and rhythmic gene expression. Cell Reports, 2022, 39, 110674.	2.9	12
4	NASH-related increases in plasma bile acid levels depend on insulin resistance. JHEP Reports, 2021, 3, 100222.	2.6	24
5	CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPKα2-SIRT1-PPARα signaling pathway. Journal of Biological Chemistry, 2020, 295, 17310-17322.	1.6	17
6	Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Molecular Metabolism, 2020, 42, 101092.	3.0	197
7	Plasma BCAA Changes in Patients With NAFLD Are Sex Dependent. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2311-2321.	1.8	39
8	Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution. Nature Metabolism, 2019, 1, 604-614.	5.1	102
9	Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell, 2019, 177, 1201-1216.e19.	13.5	100
10	Understanding lipid metabolism through hepatic steat-omics. Nature Reviews Endocrinology, 2019, 15, 321-322.	4.3	1
11	Bile acid alterations in nonalcoholic fatty liver disease, obesity, insulin resistance and type 2 diabetes: what do the human studies tell?. Current Opinion in Lipidology, 2019, 30, 244-254.	1.2	39
12	Nuclear Receptor Subfamily 1 Group D Member 1 Regulates Circadian Activity of NLRP3 Inflammasome to Reduce the Severity of Fulminant Hepatitis in Mice. Gastroenterology, 2018, 154, 1449-1464.e20.	0.6	144
13	Fasting the Microbiota to Improve Metabolism?. Cell Metabolism, 2017, 26, 584-585.	7.2	9
14	Triglyceride Synthesis by DGAT1 Protects Adipocytes from Lipid-Induced ER Stress during Lipolysis. Cell Metabolism, 2017, 26, 407-418.e3.	7.2	241
15	Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3783-3794.	1.8	78
16	An oxidative stress paradox: time for a conceptual change?. Diabetologia, 2016, 59, 2514-2517.	2.9	5
17	Pathophysiology and Mechanisms of Nonalcoholic Fatty Liver Disease. Annual Review of Physiology, 2016, 78, 181-205.	5.6	302
18	Cholesterylâ€ester transfer protein (CETP): A Kupffer cell marker linking hepatic inflammation with atherogenic dyslipidemia?. Hepatology, 2015, 62, 1659-1661.	3.6	6

JOEL T HAAS

#	Article	IF	CITATIONS
19	Chlamydia trachomatis Infection Leads to Defined Alterations to the Lipid Droplet Proteome in Epithelial Cells. PLoS ONE, 2015, 10, e0124630.	1.1	51
20	High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. Journal of Lipid Research, 2014, 55, 1465-1477.	2.0	92
21	Lipid droplet biogenesis. Current Opinion in Cell Biology, 2014, 29, 39-45.	2.6	347
22	Hepatic insulin receptor deficiency impairs the SREBP-2 response to feeding and statins. Journal of Lipid Research, 2014, 55, 659-667.	2.0	37
23	Diacylglycerol Acyltransferase-1 Localizes Hepatitis C Virus NS5A Protein to Lipid Droplets and Enhances NS5A Interaction with the Viral Capsid Core. Journal of Biological Chemistry, 2013, 288, 9915-9923.	1.6	109
24	Triacylglycerol Synthesis Enzymes Mediate Lipid Droplet Growth by Relocalizing from the ER to Lipid Droplets. Developmental Cell, 2013, 24, 384-399.	3.1	623
25	The FATP1–DGAT2 complex facilitates lipid droplet expansion at the ER–lipid droplet interface. Journal of Cell Biology, 2012, 198, 895-911.	2.3	224
26	Studies on the Substrate and Stereo/Regioselectivity of Adipose Triglyceride Lipase, Hormone-sensitive Lipase, and Diacylglycerol-O-acyltransferases. Journal of Biological Chemistry, 2012, 287, 41446-41457.	1.6	171
27	Hepatic Insulin Signaling Is Required for Obesity-Dependent Expression of SREBP-1c mRNA but Not for Feeding-Dependent Expression. Cell Metabolism, 2012, 15, 873-884.	7.2	172
28	DGAT1 mutation is linked to a congenital diarrheal disorder. Journal of Clinical Investigation, 2012, 122, 4680-4684.	3.9	127
29	DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. Journal of Lipid Research, 2011, 52, 657-667.	2.0	251
30	Transcriptional Activation of Apolipoprotein CIII Expression by Glucose May Contribute to Diabetic Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 513-519.	1.1	129
31	PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. Journal of Clinical Investigation, 2011, 121, 2504-2517.	3.9	115
32	Dissecting the role of insulin resistance in the metabolic syndrome. Current Opinion in Lipidology, 2009, 20, 206-210.	1.2	62
33	Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nature Medicine, 2008, 14, 778-782.	15.2	260
34	Hepatic Insulin Resistance Is Sufficient to Produce Dyslipidemia and Susceptibility to Atherosclerosis. Cell Metabolism, 2008, 7, 125-134.	7.2	383
35	Diminished degradation of myelin basic protein by anti-sulfatide antibody and interferon-Î ³ in myelin from glia maturation factor-deficient mice. Neuroscience Research, 2007, 58, 156-163.	1.0	7
36	Diminished cytokine and chemokine expression in the central nervous system of GMF-deficient mice with experimental autoimmune encephalomyelitis. Brain Research, 2007, 1144, 239-247.	1.1	35

#	Article	IF	CITATIONS
37	GMF-Knockout Mice are Unable to Induce Brain-Derived Neurotrophic Factor after Exercise. Neurochemical Research, 2006, 31, 579-584.	1.6	23