

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2407826/publications.pdf Version: 2024-02-01

LE AN

#	Article	IF	CITATIONS
1	Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nature Communications, 2020, 11, 2868.	12.8	285
2	Robust Swingâ€Structured Triboelectric Nanogenerator for Efficient Blue Energy Harvesting. Advanced Energy Materials, 2020, 10, 2000064.	19.5	212
3	Superâ€Durable, Lowâ€Wear, and Highâ€Performance Furâ€Brush Triboelectric Nanogenerator for Wind and Water Energy Harvesting for Smart Agriculture. Advanced Energy Materials, 2021, 11, 2003066.	19.5	189
4	Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skin‣ike Highly Sensitive Selfâ€Powered Haptic Sensors. Advanced Functional Materials, 2021, 31, .	14.9	155
5	Triboelectric Nanogenerator Network Integrated with Charge Excitation Circuit for Effective Water Wave Energy Harvesting. Advanced Energy Materials, 2020, 10, 2002123.	19.5	154
6	UV-Protective, Self-Cleaning, and Antibacterial Nanofiber-Based Triboelectric Nanogenerators for Self-Powered Human Motion Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 11205-11214.	8.0	111
7	A Triboelectric–Electromagnetic Hybrid Nanogenerator with Broadband Working Range for Wind Energy Harvesting and a Self-Powered Wind Speed Sensor. ACS Energy Letters, 0, , 1443-1452.	17.4	110
8	Whirlingâ€Folded Triboelectric Nanogenerator with High Average Power for Water Wave Energy Harvesting. Advanced Functional Materials, 2019, 29, 1904867.	14.9	98
9	Segmented Swingâ€Structured Furâ€Based Triboelectric Nanogenerator for Harvesting Blue Energy toward Marine Environmental Applications. Advanced Functional Materials, 2021, 31, 2106398.	14.9	95
10	A Selfâ€Powered Angle Sensor at Nanoradianâ€Resolution for Robotic Arms and Personalized Medicare. Advanced Materials, 2020, 32, e2001466.	21.0	93
11	Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Applied Physics Reviews, 2020, 7, 021401.	11.3	73
12	Underwater wireless communication via TENG-generated Maxwell's displacement current. Nature Communications, 2022, 13, .	12.8	73
13	Rationally segmented triboelectric nanogenerator with a constant direct-current output and low crest factor. Energy and Environmental Science, 0, , .	30.8	60
14	Swingâ€Structured Triboelectric–Electromagnetic Hybridized Nanogenerator for Breeze Wind Energy Harvesting. Advanced Materials Technologies, 2021, 6, 2100496.	5.8	45
15	Rehabilitation of Total Knee Arthroplasty by Integrating Conjoint Isometric Myodynamia and Realâ€īime Rotation Sensing System. Advanced Science, 2022, 9, e2105219.	11.2	28
16	Tiltingâ€6ensitive Triboelectric Nanogenerators for Energy Harvesting from Unstable/Fluctuating Surfaces. Advanced Functional Materials, 2019, 29, 1905319.	14.9	27
17	Flexible Filmâ€Dischargeâ€Switch Assisted Universal Power Management System for the Four Operation Modes of Triboelectric Nanogenerators. Advanced Energy Materials, 2022, 12,	19.5	19
18	Arcâ€Shaped Triboelectric Nanogenerator Based on Rolling Structure for Harvesting Lowâ€Frequency Water Wave Energy. Advanced Materials Technologies, 2021, 6, 2100359.	5.8	18

	Jie /	An	
#	ARTICLE	IF	CITATIONS
19	Active-Sensing Epidermal Stretchable Bioelectronic Patch for Noninvasive, Conformal, and Wireless Tendon Monitoring. Research, 2021, 2021, 9783432.	5.7	6