
Ananya Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2406624/publications.pdf Version: 2024-02-01

ΔΝΑΝΥΑ ΠΑς

#	Article	IF	CITATIONS
1	Molecular origin of photoluminescence of carbon dots: aggregation-induced orange-red emission. Physical Chemistry Chemical Physics, 2016, 18, 28274-28280.	1.3	143
2	On the Molecular Origin of Photoluminescence of Nonblinking Carbon Dot. Journal of Physical Chemistry C, 2017, 121, 9634-9641.	1.5	72
3	Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules. Light: Science and Applications, 2022, 11, 92.	7.7	33
4	Chiral carbon dots based on <scp>l</scp> / <scp>d</scp> -cysteine produced <i>via</i> room temperature surface modification and one-pot carbonization. Nanoscale, 2021, 13, 8058-8066.	2.8	31
5	"Where does the fluorescing moiety reside in a carbon dot?―– Investigations based on fluorescence anisotropy decay and resonance energy transfer dynamics. Physical Chemistry Chemical Physics, 2018, 20, 2251-2259.	1.3	30
6	Carbon Dot with pH Independent Near-Unity Photoluminescence Quantum Yield in an Aqueous Medium: Electrostatics-Induced FA¶rster Resonance Energy Transfer at Submicromolar Concentration. Journal of Physical Chemistry Letters, 2018, 9, 5092-5099.	2.1	30
7	Why Does the Photoluminescence Efficiency Depend on Excitation Energy in Case of a Quantum Dot? A Case Study of CdSe-Based Core/Alloy Shell/Shell Quantum Dots Employing Ultrafast Pump–Probe Spectroscopy and Single Particle Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 6922-6933.	1.5	28
8	Dual Fluorescence in GFP Chromophore Analogues: Chemical Modulation of Charge Transfer and Proton Transfer Bands. Journal of Physical Chemistry B, 2016, 120, 3503-3510.	1.2	26
9	Instantaneous, room-temperature, open-air atmosphere, solution-phase synthesis of perovskite quantum dots through halide exchange employing non-metal based inexpensive HCl/HI: ensemble and single particle spectroscopy. Nanoscale Advances, 2019, 1, 3506-3513.	2.2	17
10	Chemical tweaking of a non-fluorescent GFP chromophore to a highly fluorescent coumarinic fluorophore: application towards photo-uncaging and stem cell imaging. RSC Advances, 2013, 3, 24021.	1.7	16
11	On the Nanoscopic Environment a Neutral Fluorophore Experiences in Room Temperature Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 5051-5057.	1.5	14
12	Meta-Fluors—A Unique Way To Create a 200 Da Ultrasmall Fluorophore Emitting in Red with Intense Stokes/Solvatochromic Shift: Imaging Subcellular Nanopolarity in Live Stem Cells. Journal of Physical Chemistry C, 2019, 123, 24786-24792.	1.5	10
13	Innovative Strategy Toward Red Emission: Single-Benzenic, Ultrasmall <i>meta</i> -Fluorophores. Journal of Physical Chemistry C, 2020, 124, 27049-27054.	1.5	10
14	Correlation between size of nano-aggregates and excitation wavelength dependent fluorescence emission in room temperature ionic liquids: A case study with emim[FAP]. Chemical Physics Impact, 2021, 3, 100054.	1.7	4
15	Reply to the â€~Comment on ""Where does the fluorescing moiety reside in a carbon dot?―– Investigations based on fluorescence anisotropy decay and resonance energy transfer dynamicsâ€â€™ by H. C. Joshi, Phys. Chem. Chem. Phys., 2019, 21, DOI: 10.1039/c9cp00136k. Physical Chemistry Chemical Physics, 2019. 21. 13370-13373.	1.3	0