Yuan Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2406397/yuan-liu-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

252	17,186	58	128
papers	citations	h-index	g-index
276	21,211	11.8 avg, IF	7
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
252	Ultra-Steep-Slope High-Gain MoS Transistors with Atomic Threshold-Switching Gate <i>Advanced Science</i> , 2022 , e2104439	13.6	4
251	Efficient modulation of MoS2/WSe2 interlayer excitons via uniaxial strain. <i>Applied Physics Letters</i> , 2022 , 120, 053107	3.4	4
250	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges <i>Chemical Reviews</i> , 2022 ,	68.1	28
249	A novel specific and ultrasensitive method detecting extracellular vesicles secreted from lung cancer by padlock probe-based exponential rolling circle amplification. <i>Nano Today</i> , 2022 , 42, 101334	17.9	2
248	Multiple chemiluminescence immunoassay detection of the concentration ratio of glycosylated hemoglobin A1c to total hemoglobin in whole blood samples <i>Analytica Chimica Acta</i> , 2022 , 1192, 3393	19 6	4
247	Strain-Plasmonic Coupled Broadband Photodetector Based on Monolayer MoS Small, 2022 , e2107104	11	3
246	Study on the Air-Tightness Detection System for Pipetting in the Automated Aptamer Selection Instrument. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2022 , 17, 63-71	1.3	O
245	Selection of a High-Affinity DNA Aptamer for the Recognition of Cadmium Ions <i>Journal of Biomedical Nanotechnology</i> , 2021 , 17, 2240-2246	4	4
244	Ultrasound-Propelled Janus Rod-Shaped Micromotors for Site-Specific Sonodynamic Thrombolysis. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 ,	9.5	4
243	Visualizing Band Profiles of Gate-Tunable Junctions in MoS/WSe Heterostructure Transistors. <i>ACS Nano</i> , 2021 , 15, 16314-16321	16.7	3
242	Three new sesquiterpenoid alkaloids from the roots of and its cytotoxicity. <i>Natural Product Research</i> , 2021 , 1-9	2.3	O
241	Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures. <i>Nature Communications</i> , 2021 , 12, 1825	17.4	10
240	Van der Waals epitaxial growth of air-stable CrSe nanosheets with thickness-tunable magnetic order. <i>Nature Materials</i> , 2021 , 20, 818-825	27	68
239	High-order superlattices by rolling up van der Waals heterostructures. <i>Nature</i> , 2021 , 591, 385-390	50.4	47
238	Promises and prospects of two-dimensional transistors. <i>Nature</i> , 2021 , 591, 43-53	50.4	143
237	High-Performance Large-Scale Vertical 1T'/2H Homojunction CVD-Grown Polycrystalline MoTe2 Transistors. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2002023	4.6	5
236	Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. <i>Nature Electronics</i> , 2021 , 4, 342-347	28.4	36

(2021-2021)

235	Electronic Fluctuation of Graphene Nanoribbon MOSFETs Under a Full Quantum Dynamics Framework. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 1980-1985	2.9	О
234	Protein analysis of extracellular vesicles to monitor and predict therapeutic response in metastatic breast cancer. <i>Nature Communications</i> , 2021 , 12, 2536	17.4	36
233	Rapid One-Step Detection of Viral Particles Using an Aptamer-Based Thermophoretic Assay. Journal of the American Chemical Society, 2021 , 143, 7261-7266	16.4	22
232	Uncovering the Protective Mechanism of the Volatile Oil of against Acute Myocardial Ischemia Injury Using Network Pharmacology and Experimental Validation. <i>Evidence-based Complementary and Alternative Medicine</i> , 2021 , 2021, 6630795	2.3	О
231	High-Density Reconfigurable Synaptic Transistors Targeting a Minimalist Neural Network. <i>ACS Applied Materials & Description (Network and Section 2019)</i> , 13, 28564-28573	9.5	2
230	Identifying Promising Covalent-Organic Frameworks for Decarburization and Desulfurization from Biogas via Computational Screening. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 8858-8867	8.3	5
229	High-Resolution Van der Waals Stencil Lithography for 2D Transistors. Small, 2021, 17, e2101209	11	4
228	Gate-tunable linear magnetoresistance in molybdenum disulfide field-effect transistors with graphene insertion layer. <i>Nano Research</i> , 2021 , 14, 1814-1818	10	3
227	Variability in emotion regulation strategy use is negatively associated with depressive symptoms. <i>Cognition and Emotion</i> , 2021 , 35, 324-340	2.3	Ο
226	Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. <i>Nano Research</i> , 2021 , 14, 1768-1783	10	8
225	In-plane epitaxial growth of 2D CoSe-WSe2 metal-semiconductor lateral heterostructures with improved WSe2 transistors performance. <i>Informalij</i> Materily, 2021 , 3, 222-228	23.1	11
224	Nanosensors for Diagnosis of Infectious Diseases ACS Applied Bio Materials, 2021, 4, 3863-3879	4.1	10
223	Ultra-Steep Slope Impact Ionization Transistors Based on Graphene/InAs Heterostructures. <i>Small Structures</i> , 2021 , 2, 2000039	8.7	6
222	Two new terpenes from the aerial parts of Osbeck. <i>Natural Product Research</i> , 2021 , 1-8	2.3	
221	Highly Selective Synthesis of Monolayer or Bilayer WSe2 Single Crystals by Pre-annealing the Solid Precursor. <i>Chemistry of Materials</i> , 2021 , 33, 1307-1313	9.6	6
220	Origin of low-temperature negative transconductance in multilayer MoS2 transistors. <i>Applied Physics Letters</i> , 2021 , 119, 043502	3.4	1
219	Shape switching of CaCO-templated nanorods into stiffness-adjustable nanocapsules to promote efficient drug delivery. <i>Acta Biomaterialia</i> , 2021 , 128, 474-485	10.8	2
218	Synthesis of Ultrathin 2D Nonlayered EMnSe Nanosheets, MnSe/WS2 Heterojunction for High-Performance Photodetectors. <i>Small Structures</i> , 2021 , 2, 2100028	8.7	10

217	Assessment of the Regional and Sectoral Economic Impacts of Heat-Related Changes in Labor Productivity Under Climate Change in China. <i>Earthfs Future</i> , 2021 , 9, e2021EF002028	7.9	1
216	Dry Exfoliation of Large-Area 2D Monolayer and Heterostructure Arrays. ACS Nano, 2021,	16.7	5
215	MoS2 Homojunctions Transistors Enabled by Dimension Tailoring Strategy. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100703	6.4	2
214	Evaluating the Electrical Characteristics of Quasi-One-Dimensional ZrTe3 Nanoribbon Interconnects. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 4228-4235	4	3
213	Bacterial navigation for tumor targeting and photothermally-triggered bacterial ghost transformation for spatiotemporal drug release. <i>Acta Biomaterialia</i> , 2021 , 131, 172-184	10.8	5
212	A novel carbon aerogel enabling respiratory monitoring for bio-facial masks. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13143-13150	13	3
211	Changes in Global and Regional Characteristics of Heat Stress Waves in the 21st Century. <i>Earthfs Future</i> , 2020 , 8, e2020EF001636	7.9	9
210	An intrinsically healing artificial neuromorphic device. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 6869-68	7 /6 1	6
209	Fe and Cu co-doped graphitic carbon nitride as an eco-friendly photo-assisted catalyst for aniline degradation. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 29391-29407	5.1	15
208	Ultra-high current gain tunneling hot-electron transfer amplifier based on vertical van der Waals heterojunctions. <i>Nano Research</i> , 2020 , 13, 2085-2090	10	2
207	Palladium-Catalyzed Divergent Imidoylative Cyclization of Multifunctionalized Isocyanides: Tunable Access to Oxazol-5(4)-ones and Cyclic Ketoimines. <i>Journal of Organic Chemistry</i> , 2020 , 85, 7297-7308	4.2	2
206	Stretchable synaptic transistors with tunable synaptic behavior. <i>Nano Energy</i> , 2020 , 75, 104952	17.1	40
205	Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors. <i>Nano Research</i> , 2020 , 13, 2091-2097	10	26
204	Investigation on the Effects of Bridging Groups in Aromatic Diphenol-Based Benzoxazines: Curing Reaction and H Bonds. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 12085-12095	3.9	5
203	Hierarchically targetable fiber rods decorated with dual targeting ligands and detachable zwitterionic coronas. <i>Acta Biomaterialia</i> , 2020 , 110, 231-241	10.8	6
202	Reliable Patterning, Transfer Printing and Post-Assembly of Multiscale Adhesion-Free Metallic Structures for Nanogap Device Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 2002549	15.6	9
201	Performance of geosynthetic-reinforced pile-supported embankment on soft marine deposit. <i>Proceedings of the Institution of Civil Engineers: Geotechnical Engineering</i> , 2020 , 1-59	0.9	14
200	General synthesis of two-dimensional van der Waals heterostructure arrays. <i>Nature</i> , 2020 , 579, 368-374	50.4	195

(2020-2020)

199	Fibrous testing papers for fluorescence trace sensing and photodynamic destruction of antibiotic-resistant bacteria. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 2709-2718	7.3	10
198	Cooperativity effects between regium-bonding and pnicogen-bonding interactions in ternary MFIIIPH3OIIIMF (M = Cu, Ag, Au): an ab initio study. <i>Molecular Physics</i> , 2020 , 118, e1784478	1.7	6
197	Efficient strain modulation of 2D materials via polymer encapsulation. <i>Nature Communications</i> , 2020 , 11, 1151	17.4	81
196	Highly Reliable Low-Voltage Memristive Switching and Artificial Synapse Enabled by van der Waals Integration. <i>Matter</i> , 2020 , 2, 965-976	12.7	22
195	Palladium-catalysed dearomative aryl/cycloimidoylation of indoles. <i>Chemical Communications</i> , 2020 , 56, 3249-3252	5.8	19
194	An Electrically Controlled Wavelength-Tunable Nanoribbon Laser. <i>ACS Nano</i> , 2020 , 14, 3397-3404	16.7	17
193	Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. <i>Nature Electronics</i> , 2020 , 3, 59-69	28.4	69
192	Microfluidic solution-processed organic and perovskite nanowires fabricated for field-effect transistors and photodetectors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2353-2362	7.1	9
191	A New Alkaloid from the Aerial Parts of Bupleurum chinense DC. <i>Chemistry and Biodiversity</i> , 2020 , 17, e1900697	2.5	2
190	Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals. <i>Nature Communications</i> , 2020 , 11, 659	17.4	12
189	Enhanced mineralization of bisphenol A by eco-friendly BiFeO-MnO composite: Performance, mechanism and toxicity assessment. <i>Journal of Hazardous Materials</i> , 2020 , 399, 122883	12.8	21
188	Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. <i>Nature Electronics</i> , 2020 , 3, 630-637	28.4	26
187	Finite temperature auxiliary field quantum Monte Carlo in the canonical ensemble. <i>Journal of Chemical Physics</i> , 2020 , 153, 204108	3.9	5
186	Fibrous strips decorated with cleavable aggregation-induced emission probes for visual detection of Hg. <i>Journal of Hazardous Materials</i> , 2020 , 385, 121556	12.8	24
185	Physiological characteristics and metabolomics reveal the tolerance mechanism to low nitrogen in Glycine soja leaves. <i>Physiologia Plantarum</i> , 2020 , 168, 819-834	4.6	11
184	Eight biomarkers on a novel strip for early diagnosis of acute myocardial infarction. <i>Nanoscale Advances</i> , 2020 , 2, 1138-1143	5.1	9
183	Ultrafast growth of large single crystals of monolayer WS and WSe. <i>National Science Review</i> , 2020 , 7, 737-744	10.8	36
182	Immunosuppressive withanolides from the flower of Datura metel L. Floterap 2020 , 141, 104468	3.2	3

181	Ultrasensitive Organic-Modulated CsPbBr3 Quantum Dot Photodetectors via Fast Interfacial Charge Transfer. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901741	4.6	17
180	A single-pair method to screen Rickettsia-infected and uninfected whitefly Bemisia tabaci populations. <i>Journal of Microbiological Methods</i> , 2020 , 168, 105797	2.8	2
179	The central trend in crop yields under climate change in China: A systematic review. <i>Science of the Total Environment</i> , 2020 , 704, 135355	10.2	13
178	New indole alkaloids from the seeds of Datura metel L. Floterap [12020, 146, 104726	3.2	3
177	High-Performance Organic Electrochemical Transistors with Nanoscale Channel Length and Their Application to Artificial Synapse. <i>ACS Applied Materials & Description of Application and Their Applicat</i>	9.5	18
176	Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. <i>Nature Nanotechnology</i> , 2020 , 15, 768-775	28.7	23
175	InGaZnO Tunnel and Junction Transistors Based on Vertically Stacked Black Phosphorus/InGaZnO Heterojunctions. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000291	6.4	6
174	Graphene-based vertical thin film transistors. Science China Information Sciences, 2020, 63, 1	3.4	14
173	Electrically controllable laser frequency combs in graphene-fibre microresonators. <i>Light: Science and Applications</i> , 2020 , 9, 185	16.7	14
172	Positively charged gold-silver nanostar enabled molecular characterization of cancer associated extracellular vesicles. <i>Analytical Methods</i> , 2020 , 12, 5908-5915	3.2	2
171	Effect of Distance from Catalytic Synergy Group to Iron Porphyrin Center on Activity of G-Quadruplex/Hemin DNAzyme. <i>Molecules</i> , 2020 , 25,	4.8	4
170	Climate Change Effects on Agricultural Production: The Regional and Sectoral Economic Consequences in China. <i>Earthfs Future</i> , 2020 , 8, e2020EF001617	7.9	5
169	Rational design of AlO/2D perovskite heterostructure dielectric for high performance MoS phototransistors. <i>Nature Communications</i> , 2020 , 11, 4266	17.4	21
168	What Is the Consensus from Multiple Conclusions of Future Crop Yield Changes Affected by Climate Change in China?. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	2
167	Doping-free complementary WSe circuit via van der Waals metal integration. <i>Nature Communications</i> , 2020 , 11, 1866	17.4	68
166	Improving areal capacity of flexible LittO2 batteries by constructing a freestanding cathode with monodispersed MnO nanoparticles in N-doped mesoporous carbon nanofibers. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 10354-10362	13	16
165	A Metal-Organic Framework as Selectivity Regulator for Fe and Ascorbic Acid Detection. <i>Analytical Chemistry</i> , 2019 , 91, 12453-12460	7.8	92
164	Physiological and metabolomics analyses of young and old leaves from wild and cultivated soybean seedlings under low-nitrogen conditions. <i>BMC Plant Biology</i> , 2019 , 19, 389	5.3	9

163	In Situ Probing Molecular Intercalation in Two-Dimensional Layered Semiconductors. <i>Nano Letters</i> , 2019 , 19, 6819-6826	11.5	37
162	Two-Dimensional Alloying Molybdenum Tin Disulfide Monolayers with Fast Photoresponse. <i>ACS Applied Materials & Discounty (Naterials & Discounty)</i> 11, 39077-39087	9.5	14
161	van der Waals Epitaxial Growth of Atomically Thin 2D Metals on Dangling-Bond-Free WSe2 and WS2. <i>Advanced Functional Materials</i> , 2019 , 29, 1806611	15.6	60
160	Sequential Drug Release to Modulate Collagen Synthesis and Promote Micelle Penetration in Tumors. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 1343-1353	5.5	5
159	Regium bonds formed by MX (M?Cu, Ag, Au; X?F, Cl, Br) with phosphine-oxide/phosphinous acid: comparisons between oxygen-shared and phosphine-shared complexes. <i>Molecular Physics</i> , 2019 , 117, 2443-2455	1.7	18
158	A field-effect approach to directly profiling the localized states in monolayer MoS2. <i>Science Bulletin</i> , 2019 , 64, 1049-1055	10.6	5
157	A new type of halogen bond involving multivalent astatine: an ab initio study. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 15310-15318	3.6	20
156	van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. <i>Nano Research</i> , 2019 , 12, 1683-1689	10	20
155	Tuneable access to isoquinolines via a transition-metal-free C(sp3) ((sp3) bond cleavage rearrangement reaction. <i>Organic Chemistry Frontiers</i> , 2019 , 6, 2430-2434	5.2	2
154	Convenient Synthesis of Acyclic Amidines via Copper-Catalyzed C(sp3)-H Amidination. <i>ChemistrySelect</i> , 2019 , 4, 4647-4651	1.8	1
153	Exploring and suppressing the kink effect of black phosphorus field-effect transistors operating in the saturation regime. <i>Nanoscale</i> , 2019 , 11, 10420-10428	7.7	4
152	Phase-Tunable Synthesis of Ultrathin Layered Tetragonal CoSe and Nonlayered Hexagonal CoSe Nanoplates. <i>Advanced Materials</i> , 2019 , 31, e1900901	24	37
151	Ostwald Ripening-Mediated Grafting of Metal-Organic Frameworks on a Single Colloidal Nanocrystal to Form Uniform and Controllable MXF. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7407-7413	16.4	45
150	Prediction of Stable and High-Performance Charge Transport in Zigzag Tellurene Nanoribbons. <i>IEEE Transactions on Electron Devices</i> , 2019 , 66, 2365-2369	2.9	8
149	Van der Waals integration before and beyond two-dimensional materials. <i>Nature</i> , 2019 , 567, 323-333	50.4	530
148	Interface engineering for two-dimensional semiconductor transistors. <i>Nano Today</i> , 2019 , 25, 122-134	17.9	20
147	Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. <i>Nano Research</i> , 2019 , 12, 1139-1145	10	28
146	Identifying the metabolomics and physiological differences among Soja in the early flowering stage. <i>Plant Physiology and Biochemistry</i> , 2019 , 139, 82-91	5.4	4

145	A Sensitive Aptasensor Based on a Hemin/G-Quadruplex-Assisted Signal Amplification Strategy for Electrochemical Detection of Gastric Cancer Exosomes. <i>Small</i> , 2019 , 15, e1900735	11	158
144	Perovskite/Black Phosphorus/MoS Photogate Reversed Photodiodes with Ultrahigh Light On/Off Ratio and Fast Response. <i>ACS Nano</i> , 2019 , 13, 4804-4813	16.7	53
143	Self-Assembled Molecular-Electronic Films Controlled by Room Temperature Quantum Interference. <i>CheM</i> , 2019 , 5, 474-484	16.2	28
142	Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in LittO2 batteries. <i>Energy and Environmental Science</i> , 2019 , 12, 1046-1	034·4	69
141	Fast and controlled growth of two-dimensional layered ZrTe3 nanoribbons by chemical vapor deposition. <i>CrystEngComm</i> , 2019 , 21, 5586-5594	3.3	7
140	Metabolomics reveals the drought-tolerance mechanism in wild soybean (Glycine soja). <i>Acta Physiologiae Plantarum</i> , 2019 , 41, 1	2.6	9
139	Magnetic logic inverter from crossed structures of defect-free graphene with large unsaturated room temperature negative magnetoresistance. <i>Nano Research</i> , 2019 , 12, 2485-2489	10	2
138	Ta Doping Enhanced Room-Temperature Ferromagnetism in 2D Semiconducting MoTe2 Nanosheets. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900552	6.4	14
137	Detection, characterization and expression dynamics of histone proteins in the dinoflagellate Alexandrium pacificum during growth regulation. <i>Harmful Algae</i> , 2019 , 87, 101630	5.3	2
136	Band-Offset Degradation in van der Waals Heterojunctions. <i>Physical Review Applied</i> , 2019 , 12,	4.3	7
135	Quest for p-Type Two-Dimensional Semiconductors. ACS Nano, 2019, 13, 12294-12300	16.7	36
134	Luminescent metal organic frameworks with recognition sites for detection of hypochlorite through energy transfer. <i>Mikrochimica Acta</i> , 2019 , 186, 740	5.8	9
133	CRISPR-Cas13a mediated nanosystem for attomolar detection of canine parvovirus type 2. <i>Chinese Chemical Letters</i> , 2019 , 30, 2201-2204	8.1	26
132	High on/off ratio black phosphorus based memristor with ultra-thin phosphorus oxide layer. <i>Applied Physics Letters</i> , 2019 , 115, 193503	3.4	22
131	Effects of salinity on photosynthetic traits, ion homeostasis and nitrogen metabolism in wild and cultivated soybean. <i>PeerJ</i> , 2019 , 7, e8191	3.1	9
130	A SUMMARY OF THE CLEARANCE PRACTICE OF THE SPENT RESIN FROM NUCLEAR POWER PLANTS IN CHINA. <i>The Proceedings of the International Conference on Nuclear Engineering (ICONE</i>), 2019 , 2019.27, 1599	0.1	
129	Quantitative Surface Plasmon Interferometry via Upconversion Photoluminescence Mapping. <i>Research</i> , 2019 , 2019, 8304824	7.8	2
128	Specific Action Recognition Method based on Unbalanced Dataset 2019 ,		1

(2018-2019)

127	Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates. <i>Microsystems and Nanoengineering</i> , 2019 , 5, 54	7.7	11
126	Profiling and targeting of cellular mitochondrial bioenergetics: inhibition of human gastric cancer cell growth by carnosine. <i>Acta Pharmacologica Sinica</i> , 2019 , 40, 938-948	8	10
125	Identification of valid reference genes for the normalization of RT-qPCR gene expression data in Alexandrium catenella under different nutritional conditions. <i>Journal of Applied Phycology</i> , 2019 , 31, 1819-1833	3.2	5
124	Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer. <i>Nano Research</i> , 2019 , 12, 463-468	10	50
123	Maximizing the Current Output in Self-Aligned Graphene-InAs-Metal Vertical Transistors. <i>ACS Nano</i> , 2019 , 13, 847-854	16.7	14
122	Aptasensors for pesticide detection. <i>Biosensors and Bioelectronics</i> , 2019 , 130, 174-184	11.8	130
121	High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. <i>Nano Research</i> , 2019 , 12, 339-344	10	25
120	Halogen bonds and metal bonds involving superalkalies M2OCN/M2NCO (M = Li, Na) complexes. <i>Structural Chemistry</i> , 2019 , 30, 965-977	1.8	11
119	A K-means based firefly algorithm for localization in sensor networks. <i>International Journal of Parallel, Emergent and Distributed Systems</i> , 2019 , 34, 364-379	1	3
118	High-Performance Photoinduced Memory with Ultrafast Charge Transfer Based on MoS /SWCNTs Network Van Der Waals Heterostructure. <i>Small</i> , 2019 , 15, e1804661	11	17
117	All-Two-Dimensional-Material Hot Electron Transistor. <i>IEEE Electron Device Letters</i> , 2018 , 39, 634-637	4.4	14
116	On-Chip in Situ Monitoring of Competitive Interfacial Anionic Chemisorption as a Descriptor for Oxygen Reduction Kinetics. <i>ACS Central Science</i> , 2018 , 4, 590-599	16.8	19
115	Few-Layer GeAs Field-Effect Transistors and Infrared Photodetectors. <i>Advanced Materials</i> , 2018 , 30, e1	7 0 5934	1 69
114	Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. <i>Nature Communications</i> , 2018 , 9, 1417	17.4	136
113	Conjugated polymer nanoparticles-based fluorescent biosensor for ultrasensitive detection of hydroquinone. <i>Analytica Chimica Acta</i> , 2018 , 1012, 60-65	6.6	40
112	Enhanced Targeted Gene Transduction: AAV2 Vectors Conjugated to Multiple Aptamers via Reducible Disulfide Linkages. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2-5	16.4	30
111	Aptamer-based multifunctional ligand-modified UCNPs for targeted PDT and bioimaging. <i>Nanoscale</i> , 2018 , 10, 10986-10990	7.7	29
110	Carbon dioxide in the cage: manganese metal b rganic frameworks for high performance CO2 electrodes in Li L O2 batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 1318-1325	35.4	121

109	Carnosine suppresses oxygen-glucose deprivation/recovery-induced proliferation and migration of reactive astrocytes of rats in vitro. <i>Acta Pharmacologica Sinica</i> , 2018 , 39, 24-34	8	17
108	ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy. <i>Chemical Science</i> , 2018 , 9, 7505-7509	9.4	75
107	Two-dimensional transistors beyond graphene and TMDCs. Chemical Society Reviews, 2018, 47, 6388-64	405 8.5	193
106	Thermal behavior of the HTR-10 under combined PLOFC and ATWS condition initiated by unscrammed control rod withdrawal. <i>Nuclear Science and Techniques/Hewuli</i> , 2018 , 29, 1	2.1	5
105	Cross-Linked Aptamer-Lipid Micelles for Excellent Stability and Specificity in Target-Cell Recognition. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11589-11593	16.4	24
104	Constructing Smart Protocells with Built-In DNA Computational Core to Eliminate Exogenous Challenge. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6912-6920	16.4	31
103	Cross-Linked Aptamer[lipid Micelles for Excellent Stability and Specificity in Target-Cell Recognition. <i>Angewandte Chemie</i> , 2018 , 130, 11763-11767	3.6	6
102	TIMMDC1 Knockdown Inhibits Growth and Metastasis of Gastric Cancer Cells through Metabolic Inhibition and AKT/GSK3/ECatenin Signaling Pathway. <i>International Journal of Biological Sciences</i> , 2018 , 14, 1256-1267	11.2	7
101	Gate-tunable frequency combs in graphene-nitride microresonators. <i>Nature</i> , 2018 , 558, 410-414	50.4	101
100	Broadband gate-tunable terahertz plasmons in graphene heterostructures. <i>Nature Photonics</i> , 2018 , 12, 22-28	33.9	83
99	Highly-anisotropic optical and electrical properties in layered SnSe. <i>Nano Research</i> , 2018 , 11, 554-564	10	77
98	Distinctive Nuclear Features of Dinoflagellates with A Particular Focus on Histone and Histone-Replacement Proteins. <i>Microorganisms</i> , 2018 , 6,	4.9	6
97	Chelation-assisted assembly of multidentate colloidal nanoparticles into metal-organic nanoparticles. <i>Nanoscale</i> , 2018 , 10, 21369-21373	7.7	2
96	Microstructure and Compressive Properties of Aluminum Foams Made by 6063 Aluminum Alloy and Pure Aluminum. <i>Materials Transactions</i> , 2018 , 59, 625-633	1.3	7
95	Comparison of halide donators based on pill (M = Cu, Ag, Au), pill and pill halogen bonds. <i>Theoretical Chemistry Accounts</i> , 2018 , 137, 1	1.9	6
94	Chemical Vapor Deposition Growth of Single Crystalline CoTe2 Nanosheets with Tunable Thickness and Electronic Properties. <i>Chemistry of Materials</i> , 2018 , 30, 8891-8896	9.6	30
93	Sub-kT/q switching in InO nanowire negative capacitance field-effect transistors. <i>Nanoscale</i> , 2018 , 10, 19131-19139	7.7	6
92	Solution-processable 2D semiconductors for high-performance large-area electronics. <i>Nature</i> , 2018 , 562, 254-258	50.4	404

91	Self-Assembled Aptamer-Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. <i>Angewandte Chemie</i> , 2018 , 130, 17294-17298	3.6	23
90	Self-Assembled Aptamer-Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 17048-17052	16.4	92
89	Quantum interference mediated vertical molecular tunneling transistors. Science Advances, 2018, 4, each	it8237	43
88	Synthetic Control of Two-Dimensional NiTe Single Crystals with Highly Uniform Thickness Distributions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 14217-14223	16.4	74
87	Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. <i>Nanotechnology</i> , 2018 , 29, 474002	3.4	22
86	Versatile synthesis of MnO nanolayers on upconversion nanoparticles and their application in activatable fluorescence and MRI imaging. <i>Chemical Science</i> , 2018 , 9, 5427-5434	9.4	43
85	A theoretical investigation on Cu/Ag/Au bonding in XHP?MY(X = H, CH, F, CN, NO; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes. <i>Journal of Chemical Physics</i> , 2018 , 148, 194106	3.9	16
84	Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. <i>Nature</i> , 2018 , 557, 696-700	50.4	766
83	Fluorescent Strips of Electrospun Fibers for Ratiometric Sensing of Serum Heparin and Urine Trypsin. <i>ACS Applied Materials & Data Materials &</i>	9.5	38
82	Ambipolar Barristors for Reconfigurable Logic Circuits. <i>Nano Letters</i> , 2017 , 17, 1448-1454	11.5	18
81	Photodetectors: Solvent-Based Soft-Patterning of Graphene Lateral Heterostructures for Broadband High-Speed MetalBemiconductorMetal Photodetectors (Adv. Mater. Technol. 2/2017). Advanced Materials Technologies, 2017, 2,	6.8	2
80	A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	144
79	Thiol-ene click chemistry: a biocompatible way for orthogonal bioconjugation of colloidal nanoparticles. <i>Chemical Science</i> , 2017 , 8, 6182-6187	9.4	71
78	Artificial Base zT as Functional "Element" for Constructing Photoresponsive DNA Nanomolecules. Journal of the American Chemical Society, 2017 , 139, 9104-9107	16.4	36
77	Acetylation of Cavin-1 Promotes Lipolysis in White Adipose Tissue. <i>Molecular and Cellular Biology</i> , 2017 , 37,	4.8	8
76	Molecular Recognition-Based DNA Nanoassemblies on the Surfaces of Nanosized Exosomes. Journal of the American Chemical Society, 2017 , 139, 5289-5292	16.4	134
75	Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. <i>ACS Nano</i> , 2017 , 11, 3943-3949	16.7	264
74	Solvent-Based Soft-Patterning of Graphene Lateral Heterostructures for Broadband High-Speed MetalBemiconductorMetal Photodetectors. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600241	6.8	43

73	Recognition-then-Reaction Enables Site-Selective Bioconjugation to Proteins on Live-Cell Surfaces. Angewandte Chemie - International Edition, 2017 , 56, 11954-11957	16.4	27
72	Recognition-then-Reaction Enables Site-Selective Bioconjugation to Proteins on Live-Cell Surfaces. <i>Angewandte Chemie</i> , 2017 , 129, 12116-12119	3.6	13
71	Vertical Charge Transport and Negative Transconductance in Multilayer Molybdenum Disulfides. <i>Nano Letters</i> , 2017 , 17, 5495-5501	11.5	35
70	Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. <i>Angewandte Chemie</i> , 2017 , 129, 12078-12082	3.6	29
69	Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11916-11920	16.4	281
68	Highly Sensitive Chemical Detection with Tunable Sensitivity and Selectivity from Ultrathin Platinum Nanowires. <i>Small</i> , 2017 , 13, 1602969	11	14
67	Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions. <i>Nano Research</i> , 2017 , 10, 472-482	10	23
66	Effects of Precipitation and Topography on Total Phosphorus Loss from Purple Soil. <i>Water</i> (Switzerland), 2017 , 9, 315	3	10
65	Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors. <i>Nano Letters</i> , 2016 , 16, 6337-6342	11.5	91
64	LEACH-WM: Weighted and intra-cluster multi-hop energy-efficient algorithm for wireless sensor networks 2016 ,		6
64		4.8	6 34
	networks 2016, Acetylation of Mitochondrial Trifunctional Protein & Subunit Enhances Its Stability To Promote Fatty Acid Oxidation and Is Decreased in Nonalcoholic Fatty Liver Disease. <i>Molecular and Cellular</i>	4.8	
63	networks 2016, Acetylation of Mitochondrial Trifunctional Protein Bubunit Enhances Its Stability To Promote Fatty Acid Oxidation and Is Decreased in Nonalcoholic Fatty Liver Disease. <i>Molecular and Cellular Biology</i> , 2016, 36, 2553-67 Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with	·	34
63 62	networks 2016, Acetylation of Mitochondrial Trifunctional Protein Bubunit Enhances Its Stability To Promote Fatty Acid Oxidation and Is Decreased in Nonalcoholic Fatty Liver Disease. <i>Molecular and Cellular Biology</i> , 2016, 36, 2553-67 Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. <i>Angewandte Chemie</i> , 2016, 128, 12560-12563	3.6	34
63 62 61	Acetylation of Mitochondrial Trifunctional Protein Bubunit Enhances Its Stability To Promote Fatty Acid Oxidation and Is Decreased in Nonalcoholic Fatty Liver Disease. <i>Molecular and Cellular Biology</i> , 2016 , 36, 2553-67 Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. <i>Angewandte Chemie</i> , 2016 , 128, 12560-12563 Van der Waals heterostructures and devices. <i>Nature Reviews Materials</i> , 2016 , 1, Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals.	3.6 73·3	34 8 1262
63626160	networks 2016, Acetylation of Mitochondrial Trifunctional Protein & Dubunit Enhances Its Stability To Promote Fatty Acid Oxidation and Is Decreased in Nonalcoholic Fatty Liver Disease. Molecular and Cellular Biology, 2016, 36, 2553-67 Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. Angewandte Chemie, 2016, 128, 12560-12563 Van der Waals heterostructures and devices. Nature Reviews Materials, 2016, 1, Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nature Communications, 2016, 7, 11330 High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon	3.6 73·3 17·4	34 8 1262 173
6362616059	networks 2016, Acetylation of Mitochondrial Trifunctional Protein & Dubunit Enhances Its Stability To Promote Fatty Acid Oxidation and Is Decreased in Nonalcoholic Fatty Liver Disease. Molecular and Cellular Biology, 2016, 36, 2553-67 Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. Angewandte Chemie, 2016, 128, 12560-12563 Van der Waals heterostructures and devices. Nature Reviews Materials, 2016, 1, Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nature Communications, 2016, 7, 11330 High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures. Advanced Materials, 2016, 28, 4120-5 In situ development of highly concave and composition-confined PtNi octahedra with high oxygen	3.6 73·3 17·4	34 8 1262 173 35

55	van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials. <i>Nano Letters</i> , 2016 , 16, 367-73	11.5	163
54	Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery. <i>Nanoscale</i> , 2016 , 8, 8600-6	7.7	66
53	DNA micelle flares: a study of the basic properties that contribute to enhanced stability and binding affinity in complex biological systems. <i>Chemical Science</i> , 2016 , 7, 6041-6049	9.4	30
52	Shape effects of electrospun fiber rods on the tissue distribution and antitumor efficacy. <i>Journal of Controlled Release</i> , 2016 , 244, 52-62	11.7	27
51	Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12372-	5 ^{16.4}	60
50	Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole. <i>ACS Applied Materials & Description (Control of Materials & </i>	9.5	69
49	DLISA: A DNAzyme-Based ELISA for Protein Enzyme-Free Immunoassay of Multiple Analytes. <i>Analytical Chemistry</i> , 2015 , 87, 7746-53	7.8	43
48	Dissociation mechanism of gas hydrates (I, II, H) of alkane molecules: a comparative molecular dynamics simulation. <i>Molecular Simulation</i> , 2015 , 41, 1086-1094	2	4
47	Toward barrier free contact to molybdenum disulfide using graphene electrodes. <i>Nano Letters</i> , 2015 , 15, 3030-4	11.5	286
46	A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4900-3	16.4	234
45	High-Performance Organic Vertical Thin Film Transistor Using Graphene as a Tunable Contact. <i>ACS Nano</i> , 2015 , 9, 11102-8	16.7	58
44	Self-Assembled DNA Immunonanoflowers as Multivalent CpG Nanoagents. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 24069-74	9.5	74
43	Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. <i>Science Advances</i> , 2015 , 1, e1500613	14.3	226
42	Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13957-63	16.4	92
41	Large area growth and electrical properties of p-type WSe2 atomic layers. <i>Nano Letters</i> , 2015 , 15, 709-1	3 11.5	287
40	Preparation and properties of novel microporous hydrogels with poly(ethylene glycol) dimethacrylate and carboxylated carbon nanotubes. <i>Journal of Controlled Release</i> , 2015 , 213, e86	11.7	3
39	51.4: Invited Paper: High Performance Flexible TFTs from Oxide/Carbon Heterostructures. <i>Digest of Technical Papers SID International Symposium</i> , 2015 , 46, 775-777	0.5	
38	Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Underwater Imaging Applications. <i>Sensors</i> , 2015 , 15, 23205-17	3.8	15

37	Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14952-8	16.4	105
36	Chemical vapor deposition growth of monolayer MoSe2 nanosheets. <i>Nano Research</i> , 2014 , 7, 511-517	10	285
35	Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. <i>Nano Letters</i> , 2014 , 14, 6547-53	11.5	60
34	Facile surface functionalization of hydrophobic magnetic nanoparticles. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12552-5	16.4	124
33	Highly flexible electronics from scalable vertical thin film transistors. <i>Nano Letters</i> , 2014 , 14, 1413-8	11.5	113
32	Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. <i>Nano Letters</i> , 2014 , 14, 5590-7	11.5	782
31	Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. <i>Nature Communications</i> , 2014 , 5, 5143	17.4	329
30	MetalEemiconductor transition in atomically thin Bi2Sr2Co2O8 nanosheets. <i>APL Materials</i> , 2014 , 2, 092	5 9 .7⁄	6
29	Extraordinarily enhanced gas phase photoelectric response of CdS/TiO2 nanocomposite photoelectrode: CdS as a sensitizer and a hole capturer. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	3
28	Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nature Communications, 2013 , 4, 2225	17.4	96
27	Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. <i>Nature Nanotechnology</i> , 2013 , 8, 952-8	28.7	866
26	Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. <i>ACS Nano</i> , 2013 , 7, 4042-9	16.7	945
25	Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. <i>Nature Communications</i> , 2013 , 4, 2096	17.4	422
24	High-capacity silicon-air battery in alkaline solution. <i>ChemSusChem</i> , 2012 , 5, 177-80	8.3	35
23	High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. <i>ACS Nano</i> , 2012 , 6, 8241-9	16.7	215
22	Graphene: an emerging electronic material. <i>Advanced Materials</i> , 2012 , 24, 5782-825	24	603
21	Graphene: An Emerging Electronic Material (Adv. Mater. 43/2012). Advanced Materials, 2012, 24, 5776-	57246	25
20	Domain wall motion in synthetic Co2Si nanowires. <i>Nano Letters</i> , 2012 , 12, 1972-6	11.5	12

19	Scalable fabrication of self-aligned graphene transistors and circuits on glass. <i>Nano Letters</i> , 2012 , 12, 2653-7	11.5	67
18	Improvement of gaseous pollutant photocatalysis with WO3/TiO2 heterojunctional-electrical layered system. <i>Journal of Hazardous Materials</i> , 2011 , 196, 52-8	12.8	43
17	Photoconductivity and trap-related decay in porous TiO2/ZnO nanocomposites. <i>Journal of Applied Physics</i> , 2011 , 110, 123513	2.5	25
16	Plasmon resonance enhanced multicolour photodetection by graphene. <i>Nature Communications</i> , 2011 , 2, 579	17.4	546
15	HUVEC cell affinity evaluation and integrin-mediated mechanism study on PHSRN-modified polymer. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 84, 6-12	6	7
14	High-speed graphene transistors with a self-aligned nanowire gate. <i>Nature</i> , 2010 , 467, 305-8	50.4	1031
13	Blood compatibility evaluation of poly(D,L-lactide-co-beta-malic acid) modified with the GRGDS sequence. <i>Colloids and Surfaces B: Biointerfaces</i> , 2010 , 75, 370-6	6	18
12	Experimental Study on the Pore Structure of Directionally Solidified Porous Cu-Mn Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 3405-341	12.3	14
11	The fluorescence enhancement of quercetin-nucleic acid system and the analytical application. <i>Luminescence</i> , 2009 , 24, 416-21	2.5	2
10	Methane Aromatization over Cobalt and Gallium -Impregnated HZSM-5 Catalysts. <i>Catalysis Letters</i> , 2008 , 125, 352-358	2.8	8
9	Spatial distribution of pores in lotus-type porous metal. <i>Journal of Materials Science</i> , 2007 , 42, 6446-645	52 .3	7
8	Analysis of Deformation Mechanism with Re-stretching of Stretched Polymer Film. Part II: Analyses of Deformation Band with Characteristic Curve and Re-orientation Behavior of Molecular Chain Axis with the Model of Plastic Slippage <i>Seikei-Kakou</i> , 1999 , 11, 993-1000	Ο	
7	Changes of Dimension and Molecular Orientation with Annealing and Boiling of Strip-biaxially Stretched Poly(ethylene terephthalate) Film <i>Seikei-Kakou</i> , 1998 , 10, 658-667	О	
6	Analysis of Deformation Mechanism with Re-stretching of Stretched Polymer Film. Part I: Re-orientating Mechanism of Molecular Chain <i>Seikei-Kakou</i> , 1998 , 10, 967-978	О	
5	Robust supramolecular composite hydrogels for sustainable and \square is ible \square griculture irrigation. <i>Journal of Materials Chemistry A</i> ,	13	1
4	Low voltage and robust InSe memristor using van der Waals electrodes integration. <i>International Journal of Extreme Manufacturing</i> ,	7.9	4
3	Ultimate dielectric scaling of 2D transistors via van der Waals metal integration. Nano Research,1	10	4
2	High-Performance and Low-Power Polycrystalline MoTe 2 Thin Film Transistors with Solution-Processed Ternary Oxide High-k Dielectric. <i>Advanced Materials Interfaces</i> ,2101863	4.6	Ο

Realization of Ultra-Scaled MoS2 Vertical Diodes via Double-Side Electrodes Lamination. *Nano Letters*,

11.5 1