Rob P Coppes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/240548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 2018, 14, 1435-1455.	4.3	1,341
2	O <scp>ral</scp> S <scp>equelae of</scp> H <scp>ead and</scp> N <scp>eck</scp> R <scp>adiotherapy</scp> . Critical Reviews in Oral Biology and Medicine, 2003, 14, 199-212.	4.4	680
3	Rescue of Salivary Gland Function after Stem Cell Transplantation in Irradiated Glands. PLoS ONE, 2008, 3, e2063.	1.1	387
4	P <scp>revention and</scp> T <scp>reatment of the</scp> C <scp>onsequences of</scp> H <scp>ead and</scp> N <scp>eck</scp> R <scp>adiotherapy</scp> . Critical Reviews in Oral Biology and Medicine, 2003, 14, 213-225.	4.4	309
5	On the mechanism of salivary gland radiosensitivity. International Journal of Radiation Oncology Biology Physics, 2005, 62, 1187-1194.	0.4	280
6	Clinical Management of Salivary Gland Hypofunction and Xerostomia in Head-and-Neck Cancer Patients: Successes and Barriers. International Journal of Radiation Oncology Biology Physics, 2010, 78, 983-991.	0.4	278
7	Long-Term InÂVitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Reports, 2016, 6, 150-162.	2.3	175
8	Human Salivary Gland Stem Cells Functionally Restore Radiation Damaged Salivary Glands. Stem Cells, 2016, 34, 640-652.	1.4	174
9	Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer. Science Translational Medicine, 2015, 7, 305ra147.	5.8	165
10	Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiotherapy and Oncology, 2009, 92, 466-471.	0.3	162
11	Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiotherapy and Oncology, 2011, 99, 367-372.	0.3	157
12	Parotid and submandibular/sublingual salivary flow during high dose radiotherapy. Radiotherapy and Oncology, 2001, 61, 271-274.	0.3	155
13	Purification and ExÂVivo Expansion of Fully Functional Salivary Gland Stem Cells. Stem Cell Reports, 2014, 3, 957-964.	2.3	143
14	Mobilization of Bone Marrow Stem Cells by Granulocyte Colony-Stimulating Factor Ameliorates Radiation-Induced Damage to Salivary Glands. Clinical Cancer Research, 2006, 12, 1804-1812.	3.2	141
15	Physiological Interaction of Heart and Lung in Thoracic Irradiation. International Journal of Radiation Oncology Biology Physics, 2012, 84, e639-e646.	0.4	130
16	Keratinocyte Growth Factor Prevents Radiation Damage to Salivary Glands by Expansion of the Stem/Progenitor Pool. Stem Cells, 2008, 26, 2595-2601.	1.4	123
17	Patient-derived tumor organoids for prediction of cancer treatment response. Seminars in Cancer Biology, 2018, 53, 258-264.	4.3	122
18	Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland. Radiotherapy and Oncology, 2013, 108, 458-463.	0.3	121

#	Article	IF	CITATIONS
19	Concise Review: Adult Salivary Gland Stem Cells and a Potential Therapy for Xerostomia. Stem Cells, 2013, 31, 613-619.	1.4	120
20	Early to late sparing of radiation damage to the parotid gland by adrenergic and muscarinic receptor agonists. British Journal of Cancer, 2001, 85, 1055-1063.	2.9	117
21	Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. International Journal of Radiation Oncology Biology Physics, 2003, 57, 274-281.	0.4	111
22	Dose-volume effects in the rat cervical spinal cord after proton irradiation. International Journal of Radiation Oncology Biology Physics, 2002, 52, 205-211.	0.4	97
23	ACE inhibition attenuates radiation-induced cardiopulmonary damage. Radiotherapy and Oncology, 2015, 114, 96-103.	0.3	97
24	Comparison of radiosensitivity of rat parotid and submandibular glands after different radiation schedules. Radiotherapy and Oncology, 2002, 63, 321-328.	0.3	94
25	Stem cells and the repair of radiationâ€induced salivary gland damage. Oral Diseases, 2011, 17, 143-153.	1.5	94
26	Transforming growth factor-β plasma dynamics and post-irradiation lung injury in lung cancer patients. Radiotherapy and Oncology, 2004, 71, 183-189.	0.3	89
27	Protection of Salivary Function by Concomitant Pilocarpine During Radiotherapy: A Double-Blind, Randomized, Placebo-Controlled Study. International Journal of Radiation Oncology Biology Physics, 2008, 70, 14-22.	0.4	88
28	Current ideas to reduce or salvage radiation damage to salivary glands. Oral Diseases, 2015, 21, e1-10.	1.5	87
29	Radiation Damage to the Heart Enhances Early Radiation-Induced Lung Function Loss: Figure 1 Cancer Research, 2005, 65, 6509-6511.	0.4	83
30	Prevention and treatment of radiotherapyâ€induced side effects. Molecular Oncology, 2020, 14, 1538-1554.	2.1	77
31	The Impact of Heart Irradiation on Dose–Volume Effects in the Rat Lung. International Journal of Radiation Oncology Biology Physics, 2007, 69, 552-559.	0.4	76
32	Volume effects and region-dependent radiosensitivity of the parotid gland. International Journal of Radiation Oncology Biology Physics, 2005, 62, 1090-1095.	0.4	74
33	Cytokine Treatment Improves Parenchymal and Vascular Damage of Salivary Glands after Irradiation. Clinical Cancer Research, 2008, 14, 7741-7750.	3.2	74
34	Regional differences in radiosensitivity across the rat cervical spinal cord. International Journal of Radiation Oncology Biology Physics, 2005, 61, 543-551.	0.4	72
35	Radiation induced cell loss in rat submandibular gland and its relation to gland function. International Journal of Radiation Biology, 2000, 76, 419-429.	1.0	70
36	Stem Cell Therapies for the Treatment of Radiation-Induced Normal Tissue Side Effects. Antioxidants and Redox Signaling, 2014, 21, 338-355.	2.5	70

#	Article	IF	CITATIONS
37	Secondary radiation damage as the main cause for unexpected volume effects: A histopathologic study of the parotid gland. International Journal of Radiation Oncology Biology Physics, 2006, 64, 98-105.	0.4	64
38	Prediction of response to radiotherapy in the treatment of esophageal cancer using stem cell markers. Radiotherapy and Oncology, 2013, 107, 434-441.	0.3	63
39	Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension. Thorax, 2012, 67, 334-341.	2.7	61
40	Bath and Shower Effects in the Rat Parotid Gland Explain Increased Relative Risk of Parotid Gland Dysfunction After Intensity-Modulated Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2009, 74, 1002-1005.	0.4	59
41	Cellular senescence contributes to radiation-induced hyposalivation by affecting the stem/progenitor cell niche. Cell Death and Disease, 2020, 11, 854.	2.7	59
42	High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals. International Journal of Radiation Oncology Biology Physics, 2012, 83, 1291-1297.	0.4	58
43	Cancer stem cells with increased metastatic potential as a therapeutic target for esophageal cancer. Seminars in Cancer Biology, 2017, 44, 60-66.	4.3	58
44	Radiation-induced apoptosis in relation to acute impairment of rat salivary gland function. International Journal of Radiation Biology, 1998, 73, 641-648.	1.0	55
45	Pulmonary Radiation Injury: Identification of Risk Factors Associated with Regional Hypersensitivity. Cancer Research, 2005, 65, 3568-3576.	0.4	52
46	Influence of adjacent low-dose fields on tolerance to high doses of protons in rat cervical spinal cord. International Journal of Radiation Oncology Biology Physics, 2006, 64, 1204-1210.	0.4	52
47	Effects of Radioiodine Treatment on Salivary Gland Function in Patients with Differentiated Thyroid Carcinoma: A Prospective Study. Journal of Nuclear Medicine, 2016, 57, 1685-1691.	2.8	52
48	Variability of flow rate when collecting stimulated human parotid saliva. European Journal of Oral Sciences, 2005, 113, 386-390.	0.7	50
49	Changes in Expression of Injury After Irradiation of Increasing Volumes in Rat Lung. International Journal of Radiation Oncology Biology Physics, 2007, 67, 1510-1518.	0.4	47
50	Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage. Seminars in Radiation Oncology, 2009, 19, 112-121.	1.0	47
51	Muscarinic receptor stimulation increases tolerance of rat salivary gland function to radiation damage. International Journal of Radiation Biology, 1997, 72, 615-625.	1.0	46
52	TGFβ-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGFβ-receptor I signalling. Radiotherapy and Oncology, 2007, 83, 289-295.	0.3	46
53	Sialogogue-Related Radioprotection of Salivary Gland Function: The Degranulation Concept Revisited. Radiation Research, 1997, 148, 240.	0.7	45
54	Salivary Gland Hypofunction and/or Xerostomia Induced by Nonsurgical Cancer Therapies: ISOO/MASCC/ASCO Guideline. Journal of Clinical Oncology, 2021, 39, 2825-2843.	0.8	45

#	Article	IF	CITATIONS
55	Early Radiation Effects on Muscarinic Receptor-Induced Secretory Responsiveness of the Parotid Gland in the Freely Moving Rat. Radiation Research, 2000, 153, 339-346.	0.7	44
56	Preservation of the rat parotid gland function after radiation by prophylactic pilocarpine treatment: radiation dose dependency and compensatory mechanisms. International Journal of Radiation Oncology Biology Physics, 1999, 45, 483-489.	0.4	42
57	Enhanced proliferation of acinar and progenitor cells by prophylactic pilocarpine treatment underlies the observed amelioration of radiation injury to parotid glands. Radiotherapy and Oncology, 2009, 90, 253-256.	0.3	40
58	Quantifying Local Radiation-Induced Lung Damage From Computed Tomography. International Journal of Radiation Oncology Biology Physics, 2010, 76, 548-556.	0.4	39
59	Salivary Gland Stem Cells Age Prematurely in Primary Sjögren's Syndrome. Arthritis and Rheumatology, 2019, 71, 133-142.	2.9	39
60	Loco-regional differences in pulmonary function and density after partial rat lung irradiation. Radiotherapy and Oncology, 2003, 69, 11-19.	0.3	37
61	Generation and Differentiation of Adult Tissue-Derived Human Thyroid Organoids. Stem Cell Reports, 2021, 16, 913-925.	2.3	37
62	Radiation and Transforming Growth Factor-Î ² Cooperate in Transcriptional Activation of the Profibrotic Plasminogen Activator Inhibitor-1 Gene. Clinical Cancer Research, 2005, 11, 5956-5964.	3.2	36
63	The evolving definition of salivary gland stem cells. Npj Regenerative Medicine, 2021, 6, 4.	2.5	36
64	FLASH radiotherapy International Workshop. Radiotherapy and Oncology, 2019, 139, 1-3.	0.3	34
65	DNA Damage-Induced Inflammatory Microenvironment and Adult Stem Cell Response. Frontiers in Cell and Developmental Biology, 2021, 9, 729136.	1.8	34
66	Isolation of Mouse Salivary Gland Stem Cells. Journal of Visualized Experiments, 2011, , .	0.2	33
67	A new CT-based method to quantify radiation-induced lung damage in patients. Radiotherapy and Oncology, 2015, 117, 4-8.	0.3	33
68	Lack of DNA Damage Response at Low Radiation Doses in Adult Stem Cells Contributes to Organ Dysfunction. Clinical Cancer Research, 2018, 24, 6583-6593.	3.2	31
69	Techniques for precision irradiation of the lateral half of the rat cervical spinal cord using 150 MeV protons. Physics in Medicine and Biology, 2001, 46, 2857-2871.	1.6	29
70	Defects in muscarinic receptor-coupled signal transduction in isolated parotid gland cells after in vivo irradiation: evidence for a non-DNA target of radiation. British Journal of Cancer, 2005, 92, 539-546.	2.9	29
71	Similar ex vivo expansion and post-irradiation regenerative potential of juvenile and aged salivary gland stem cells. Radiotherapy and Oncology, 2015, 116, 443-448.	0.3	29
72	The InÂVitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers. International Journal of Radiation Oncology Biology Physics, 2016, 95, 103-111.	0.4	26

#	Article	IF	CITATIONS
73	Patient-Derived Papillary Thyroid Cancer Organoids for Radioactive Iodine Refractory Screening. Cancers, 2020, 12, 3212.	1.7	25
74	Irradiation of rat brain reduces P-glycoprotein expression and function. British Journal of Cancer, 2007, 97, 322-326.	2.9	23
75	Parotid Gland Stem Cell Sparing Radiation Therapy for Patients With Head and Neck Cancer: A Double-Blind Randomized Controlled Trial. International Journal of Radiation Oncology Biology Physics, 2022, 112, 306-316.	0.4	22
76	Mouse parotid salivary gland organoids for the in vitro study of stem cell radiation response. Oral Diseases, 2021, 27, 52-63.	1.5	21
77	Addition of HER2 and CD44 to 18F-FDG PET–based clinico-radiomic models enhances prediction of neoadjuvant chemoradiotherapy response in esophageal cancer. European Radiology, 2021, 31, 3306-3314.	2.3	21
78	Relation between radiation-induced whole lung functional loss and regional structural changes in partial irradiated rat lung. International Journal of Radiation Oncology Biology Physics, 2006, 64, 1495-1502.	0.4	19
79	Endoglin haploinsufficiency attenuates radiation-induced deterioration of kidney function in mice. Radiotherapy and Oncology, 2013, 108, 464-468.	0.3	18
80	Hedgehog Pathway as a Potential Intervention Target in Esophageal Cancer. Cancers, 2019, 11, 821.	1.7	18
81	Current and Future Perspectives of the Use of Organoids in Radiobiology. Cells, 2020, 9, 2649.	1.8	18
82	Characterization of presynaptic vascular muscarinic receptors inhibiting endogenous noradrenaline overflow in the portal vein of the freely moving rat. British Journal of Pharmacology, 1990, 99, 223-226.	2.7	17
83	Optimum dose range for the amelioration of long term radiation-induced hyposalivation using prophylactic pilocarpine treatment. Radiotherapy and Oncology, 2008, 86, 347-353.	0.3	17
84	ΔNp73 Enhances Promoter Activity of TGF-Î ² Induced Genes. PLoS ONE, 2012, 7, e50815.	1.1	16
85	Radioprotective effect of amifostine on parotid gland functioning is region dependent. International Journal of Radiation Oncology Biology Physics, 2005, 63, 1584-1591.	0.4	15
86	Volume-Dependent Expression of In-Field and Out-of-Field Effects in the Proton-Irradiated Rat Lung. International Journal of Radiation Oncology Biology Physics, 2011, 81, 262-269.	0.4	15
87	MTA3 Represses Cancer Stemness by Targeting the SOX2OT/SOX2 Axis. IScience, 2019, 22, 353-368.	1.9	15
88	Synergistic induction of profibrotic PAI-1 by TGF-Î ² and radiation depends on p53. Radiotherapy and Oncology, 2010, 97, 33-35.	0.3	14
89	Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects. International Journal of Radiation Oncology Biology Physics, 2016, 94, 163-171.	0.4	14
90	Role of glial-cell-derived neurotrophic factor in salivary gland stem cell response to irradiation. Radiotherapy and Oncology, 2017, 124, 448-454.	0.3	14

#	Article	IF	CITATIONS
91	Threeâ€dimensional dose distribution for partial irradiation of rat parotid glands with 200 kV Xâ€rays. International Journal of Radiation Biology, 2003, 79, 689-700.	1.0	13
92	Heterogeneity of prejunctional neuropeptide Y receptors inhibiting noradrenaline overflow in the portal vein of freely moving rats. European Journal of Pharmacology, 1994, 261, 311-316.	1.7	12
93	Bone marrow-derived macrophages incorporate into the endothelium and influence vascular and renal function after irradiation. International Journal of Radiation Biology, 2014, 90, 769-777.	1.0	12
94	Presynaptic muscarinic receptors inhibiting endogenous noradrenaline release in the portal vein of the freely moving rat. British Journal of Pharmacology, 1989, 97, 586-590.	2.7	11
95	Dysfunctional presynaptic α2-adrenoceptors expose facilitatory β2-adrenoceptors in the vasculature of spontaneously hypertensive rats. European Journal of Pharmacology, 1992, 211, 257-261.	1.7	11
96	Autophagy induction during stem cell activation plays a key role in salivary gland self-renewal. Autophagy, 2022, 18, 293-308.	4.3	11
97	MTA3-SOX2 Module Regulates Cancer Stemness and Contributes to Clinical Outcomes of Tongue Carcinoma. Frontiers in Oncology, 2019, 9, 816.	1.3	10
98	Strong activation of vascular prejunctional β2-adrenoceptors in freely moving rats by adrenaline released as a co-transmitter. European Journal of Pharmacology, 1993, 243, 273-279.	1.7	9
99	Sustained prejunctional facilitation of noradrenergic neurotransmission by adrenaline as a coâ€transmitter in the portal vein of freely moving rats. British Journal of Pharmacology, 1994, 113, 342-344.	2.7	9
100	Co-released adrenaline markedly facilitates noradrenaline overflow through prejunctional β2-adrenoceptors during swimming exercise. European Journal of Pharmacology, 1995, 274, 33-40.	1.7	9
101	Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney. International Journal of Radiation Oncology Biology Physics, 2014, 89, 599-606.	0.4	9
102	In vitro biological response of cancer and normal tissue cells to proton irradiation not affected by an added magnetic field. Radiotherapy and Oncology, 2019, 137, 125-129.	0.3	9
103	Thyroid Gland Organoids: Current Models and Insights for Application in Tissue Engineering. Tissue Engineering - Part A, 2022, 28, 500-510.	1.6	9
104	Targeting Stem Cells in Radiation Oncology. Clinical Oncology, 2017, 29, 329-334.	0.6	8
105	Radiation oncology in the new virtual and digital era. Radiotherapy and Oncology, 2021, 154, A1-A4.	0.3	8
106	Comments on. European Journal of Cancer, 2002, 38, 851-852.	1.3	7
107	Personalised radiation therapy taking both the tumour and patient into consideration. Radiotherapy and Oncology, 2022, 166, A1-A5.	0.3	7
108	Intraoperative MET-receptor targeted fluorescent imaging and spectroscopy for lymph node detection in papillary thyroid cancer: novel diagnostic tools for more selective central lymph node compartment dissection. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 3557-3570.	3.3	7

#	Article	IF	CITATIONS
109	Post-irradiation dietary vitamin E does not affect the development of radiation-induced lung damage in rats. Radiotherapy and Oncology, 2004, 72, 67-70.	0.3	6
110	Preoperative irradiation with 5 × 5ÂGy in a murine isolated colon loop model does not cause anastomotic weakening after colon resection. International Journal of Colorectal Disease, 2008, 23, 1115-1124.	1.0	6
111	The Radiation-Induced Regenerative Response of Adult Tissue-Specific Stem Cells: Models and Signaling Pathways. Cancers, 2021, 13, 855.	1.7	6
112	Prejunctional histamine H3-receptors inhibit electrically evoked endogenous noradrenaline overflow in the portal vein of freely moving rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 355, 256-260.	1.4	5
113	Can We Rescue Salivary Gland Function after Irradiation?. Scientific World Journal, The, 2008, 8, 959-962.	0.8	5
114	The Hippo signaling pathway effector YAP promotes salivary gland regeneration after injury. Science Signaling, 2021, 14, eabk0599.	1.6	5
115	Development of a facility for highâ€precision irradiation of cells with carbon ions. Medical Physics, 2011, 38, 256-263.	1.6	4
116	Tyrosine Phosphatase PTPRO Deficiency in ERBB2-Positive Breast Cancer Contributes to Poor Prognosis and Lapatinib Resistance. Frontiers in Pharmacology, 2022, 13, 838171.	1.6	4
117	Pre- and postganglionic stimulation-induced noradrenaline overflow is markedly facilitated by a prejunctional l²2-adrenoceptor-mediated control mechanism in the pithed rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 570-577.	1.4	3
118	Micro cone beam computed tomography for sensitive assessment of radiation-induced late lung toxicity in preclinical models. Radiotherapy and Oncology, 2019, 138, 17-24.	0.3	3
119	β-Adrenergic signaling induces Notch-mediated salivary gland progenitor cell control. Stem Cell Reports, 2021, 16, 2813-2824.	2.3	3
120	Future Prevention and Treatment of Radiation-Induced Hyposalivation. , 2015, , 195-212.		2
121	Role of mTOR through Autophagy in Esophageal Cancer Stemness. Cancers, 2022, 14, 1806.	1.7	2
122	Influence of the baroreceptor reflex on the modulation of noradrenaline overflow through prejunctional receptors in the portal vein of freely moving rats. Autonomic and Autacoid Pharmacology, 1994, 14, 403-410.	0.7	1
123	SOCS box: fine-tuning inflammatory responses. Blood, 2007, 110, 1403-1404.	0.6	1
124	Generation and Application of Inducible Chimeric RNA ASTN2-PAPPAas Knockin Mouse Model. Cells, 2022, 11, 277.	1.8	1
125	Cancer Stem Cells in Radiation Oncology. , 2019, , 1-9.		0
126	Macrophages Come To The Rescue. Cancer Research, 2020, 80, 5462-5463.	0.4	0

#	Article	IF	CITATIONS
127	Abstract IA-020: Optimizing stem cell niche for post-irradiation regeneration. , 2021, , .		Ο
128	OC-0287 Long-term recovery of pulmonary vasculature after thoracic irradiation requires sparing of the heart. Radiotherapy and Oncology, 2021, 161, S194-S195.	0.3	0
129	OC-0063 Role of microenvironment on the post-irradiation regenerative potential of salivary gland stem cells. Radiotherapy and Oncology, 2021, 161, S38-S39.	0.3	Ο
130	Unraveling the regulation of a putative cancer stem cell-like population in esophageal cancer Journal of Clinical Oncology, 2015, 33, 77-77.	0.8	0
131	The role of mTOR inhibitors in targeting a putative cancer stem cell-like population in esophageal cancer Journal of Clinical Oncology, 2016, 34, 43-43.	0.8	0
132	Radiation-induced lung disease. , 2019, , 612-614.		0
133	Role of Quiescent CellsÂInÂThe Homeostatic Maintenance of the Adult Submandibular Salivary Gland. SSRN Electronic Journal, 0, , .	0.4	0
134	MET Targeted Molecular Fluorescence Guided Imaging and Quantitative Spectroscopy for the Detection of Lymph Node Metastases in Papillary Thyroid Cancer. European Journal of Surgical Oncology, 2022, 48, e49-e50.	0.5	0
135	In Reply to Sari and Yazici. International Journal of Radiation Oncology Biology Physics, 2022, 112, 1291-1293.	0.4	0
136	In Reply to Kashid et al International Journal of Radiation Oncology Biology Physics, 2022, 113, 904-905.	0.4	0