Toshiaki Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2405432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Processing and Piezoelectric Properties of Lead-Free (K,Na) (Nb,Ta) O3 Ceramics. Journal of the American Ceramic Society, 2005, 88, 1190-1196.	1.9	436
2	Impact of Anode Microstructure on Solid Oxide Fuel Cells. Science, 2009, 325, 852-855.	6.0	423
3	Sinterability and Piezoelectric Properties of (K,Na)NbO3Ceramics with Novel Sintering Aid. Japanese Journal of Applied Physics, 2004, 43, 7159-7163.	0.8	214
4	Effect of Li Substitution on the Piezoelectric Properties of Potassium Sodium Niobate Ceramics. Japanese Journal of Applied Physics, 2005, 44, 6136-6142.	0.8	172
5	Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. Journal of Power Sources, 2006, 160, 73-77.	4.0	148
6	Sintering and Piezoelectric Properties of Potassium Sodium Niobate Ceramics with Newly Developed Sintering Aid. Japanese Journal of Applied Physics, 2005, 44, 258-263.	0.8	130
7	AC impedance characteristics for anode-supported microtubular solid oxide fuel cells. Electrochimica Acta, 2012, 67, 159-165.	2.6	96
8	Degradation evaluation by distribution of relaxation times analysis for microtubular solid oxide fuel cells. Electrochimica Acta, 2020, 339, 135913.	2.6	84
9	Nanocomposite electrodes for high current density over 3 A cmâ^'2 in solid oxide electrolysis cells. Nature Communications, 2019, 10, 5432.	5.8	79
10	Improvement of SOFC Performance Using a Microtubular, Anode-Supported SOFC. Journal of the Electrochemical Society, 2006, 153, A925.	1.3	77
11	Examination of wet coating and co-sintering technologies for micro-SOFCs fabrication. Journal of Membrane Science, 2007, 300, 45-50.	4.1	75
12	High performance of La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O1.95 nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells. Journal of Power Sources, 2013, 226, 354-358.	4.0	74
13	Current collecting efficiency of micro tubular SOFCs. Journal of Power Sources, 2007, 163, 737-742.	4.0	68
14	A functional layer for direct use of hydrocarbonfuel in low temperature solid-oxidefuelcells. Energy and Environmental Science, 2011, 4, 940-943.	15.6	64
15	Challenge for lowering concentration polarization in solid oxide fuel cells. Journal of Power Sources, 2016, 302, 53-60.	4.0	60
16	Design and Fabrication of Lightweight, Submillimeter Tubular Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters, 2007, 10, A177.	2.2	58
17	Fabrication and characterization of high performance cathode supported small-scale SOFC for intermediate temperature operation. Electrochemistry Communications, 2008, 10, 1381-1383.	2.3	56
18	Synthesis and Characterization of (K0.5Na0.5)(Nb0.7Ta0.3)O3Piezoelectric Ceramics Sintered with Sintering Aid K5.4Cu1.3Ta10O29. Japanese Journal of Applied Physics, 2005, 44, 6618-6623.	0.8	50

#	Article	IF	CITATIONS
19	Orientation control of perovskite thin films on glass substrates by the application of a seed layer prepared from oxide nanosheets. Journal of Sol-Gel Science and Technology, 2007, 42, 381-387.	1.1	49
20	Effect of Ni diffusion into BaZr0.1Ce0.7Y0.1Yb0.1O3â^' electrolyte during high temperature co-sintering in anode-supported solid oxide fuel cells. Ceramics International, 2018, 44, 3134-3140.	2.3	44
21	High power density cell using nanostructured Sr-doped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis. Journal of Power Sources, 2016, 302, 308-314.	4.0	43
22	Processing and Properties of Rare Earth Ion-Doped Bismuth Titanate Thin Films by Chemical Solution Deposition method. Japanese Journal of Applied Physics, 2003, 42, 5222-5226.	0.8	42
23	Anode-supported micro tubular SOFCs for advanced ceramic reactor system. Journal of Power Sources, 2007, 171, 92-95.	4.0	40
24	Fabrication and characterization of micro tubular SOFCs for advanced ceramic reactors. Journal of Alloys and Compounds, 2008, 451, 632-635.	2.8	40
25	Fabrication of needle-type micro SOFCs for micro power devices. Electrochemistry Communications, 2008, 10, 1563-1566.	2.3	39
26	Effect of anode microstructure on the performance of micro tubular SOFCs. Solid State Ionics, 2009, 180, 546-549.	1.3	37
27	Impact of direct butane microtubular solid oxide fuel cells. Journal of Power Sources, 2012, 220, 74-78.	4.0	37
28	Cube-type micro SOFC stacks using sub-millimeter tubular SOFCs. Journal of Power Sources, 2008, 183, 544-550.	4.0	36
29	Fabrication and evaluation of cathode-supported small scale SOFCs. Materials Letters, 2008, 62, 1518-1520.	1.3	35
30	Extremely fine structured cathode for solid oxide fuel cells using Sr-doped LaMnO3 and Y2O3-stabilized ZrO2 nano-composite powder synthesized by spray pyrolysis. Journal of Power Sources, 2017, 341, 280-284.	4.0	34
31	Synthesis and characterization of BaTiO3-coated Ni particles. Journal of the European Ceramic Society, 2004, 24, 507-510.	2.8	33
32	Evaluation of Micro LSM-Supported GDC/ScSZ Bilayer Electrolyte with LSM–GDC Activation Layer for Intermediate Temperature-SOFCs. Journal of the Electrochemical Society, 2008, 155, B423.	1.3	33
33	Fabrication of micro-tubular solid oxide fuel cells with a single-grain-thick yttria stabilized zirconia electrolyte. Journal of Power Sources, 2010, 195, 7825-7828.	4.0	31
34	Electrochemical characterizations of microtubular solid oxide fuel cells under a long-term testing at intermediate temperature operation. Journal of Power Sources, 2011, 196, 2627-2630.	4.0	28
35	A Key for Achieving Higher Open-Circuit Voltage in Protonic Ceramic Fuel Cells: Lowering Interfacial Electrode Polarization. ACS Applied Energy Materials, 2019, 2, 587-597.	2.5	28
36	Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature. International Journal of Hydrogen Energy, 2014, 39, 19731-19736.	3.8	27

#	Article	IF	CITATIONS
37	Development of cube-type SOFC stacks using anode-supported tubular cells. Journal of Power Sources, 2008, 175, 68-74.	4.0	25
38	Effect of anode functional layer on energy efficiency of solid oxide fuel cells. Electrochemistry Communications, 2011, 13, 959-962.	2.3	25
39	Effects of Anode Microstructure on Mechanical and Electrochemical Properties for Anode upported Microtubular Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 2013, 96, 3584-3588.	1.9	24
40	Development of a Dense Electrolyte Thin Film by the Inkâ€Jet Printing Technique for a Porous LSM Substrate. Journal of the American Ceramic Society, 2008, 91, 346-349.	1.9	23
41	Synthesis of porous titania thin films using carbonatation reaction and its hydrophilic property. Thin Solid Films, 2008, 516, 3888-3892.	0.8	23
42	Touch sensor for micromanipulation with pipette using lead-free (K,Na)(Nb,Ta)O3 piezoelectric ceramics. Journal of Applied Physics, 2005, 98, 094505.	1.1	22
43	Design and Fabrication of a Novel Electrode-Supported Honeycomb SOFC. Journal of the American Ceramic Society, 2009, 92, S107-S111.	1.9	22
44	Improved transport property of proton-conducting solid oxide fuel cell with multi-layered electrolyte structure. Journal of Power Sources, 2017, 364, 458-464.	4.0	22
45	Evaluation of extruded cathode honeycomb monolith-supported SOFC under rapid start-up operation. Electrochimica Acta, 2009, 54, 1478-1482.	2.6	21
46	Development and Evaluation of a Cathode-Supported SOFC Having a Honeycomb Structure. Electrochemical and Solid-State Letters, 2008, 11, B117.	2.2	20
47	Electrochemical analysis for anode-supported microtubular solid oxide fuel cells in partial reducing and oxidizing conditions. Solid State Ionics, 2014, 262, 407-410.	1.3	19
48	Electrochemical and microstructural properties of Ni–(Y2O3)0.08(ZrO2)0.92–(Ce0.9Gd0.1)O1.95 anode-supported microtubular solid oxide fuel cells. Solid State Ionics, 2016, 285, 227-233.	1.3	19
49	Development of novel micro flat-tube solid-oxide fuel cells. Electrochemistry Communications, 2011, 13, 719-722.	2.3	18
50	One-step sintering process of gadolinia-doped ceria interlayer–scandia-stabilized zirconia electrolyte for anode supported microtubular solid oxide fuel cells. Journal of Power Sources, 2012, 199, 170-173.	4.0	18
51	Orientation control of chemical solution deposited LaNiO3 thin films. Thin Solid Films, 2005, 491, 78-81.	0.8	17
52	New Stack Design of Microâ€ŧubular SOFCs for Portable Power Sources. Fuel Cells, 2008, 8, 381-384.	1.5	17
53	Low temperature densification process of solid-oxide fuel cell electrolyte controlled by anode support shrinkage. RSC Advances, 2011, 1, 911.	1.7	17
54	Development of anode-supported electrochemical cell based on proton-conductive Ba(Ce,Zr)O3 electrolyte. Solid State Ionics, 2016, 288, 347-350.	1.3	17

#	Article	IF	CITATIONS
55	Effect of Ni content on CO2 methanation performance with tubular-structured Ni-YSZ catalysts and optimization of catalytic activity for temperature management in the reactor. International Journal of Hydrogen Energy, 2020, 45, 12911-12920.	3.8	17
56	In Situ Formation of Ce-TZP/Ba Hexaaluminate Composites Journal of the Ceramic Society of Japan, 1999, 107, 814-819.	1.3	16
57	Fabrication and evaluation of a novel cathode-supported honeycomb SOFC stack. Materials Letters, 2009, 63, 2577-2580.	1.3	16
58	Performance of the Micro-SOFC Module Using Submillimeter Tubular Cells. Journal of the Electrochemical Society, 2009, 156, B318.	1.3	15
59	Effect of Anode Thickness on Polarization Resistance for Metal-Supported Microtubular Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F243-F247.	1.3	15
60	Fabrication and properties of Er-substituted BaNb2O6 thin films through a chemical route. Journal of Alloys and Compounds, 2006, 408-412, 538-542.	2.8	14
61	Performance of Ni–Fe/gadolinium-doped CeO2 anode supported tubular solid oxide fuel cells using steam reforming of methane. Journal of Power Sources, 2012, 202, 225-229.	4.0	14
62	Internal Partial Oxidation Reforming of Butane and Steam Reforming of Ethanol for Anodeâ€supported Microtubular Solid Oxide Fuel Cells. Fuel Cells, 2017, 17, 875-881.	1.5	14
63	Thermal management of CO2 methanation with axial staging of active metal concentration in Ni-YSZ tubular catalysts. International Journal of Hydrogen Energy, 2021, 46, 4116-4125.	3.8	14
64	Fabrication and Characterization of Microtubular SOFCs with Multilayered Electrolyte. Electrochemical and Solid-State Letters, 2008, 11, B87.	2.2	13
65	Demonstration of the Rapid Start-Up Operation of Cathode-Supported SOFCs Using a Microtubular LSM Support. Journal of the Electrochemical Society, 2008, 155, B1141.	1.3	12
66	Effects of anode microstructures on durability of microtubular solid oxide fuel cells during internal steam reforming of methane. Electrochemistry Communications, 2014, 49, 34-37.	2.3	12
67	Correlation between Dissolved Protons in Nickel-Doped BaZr _{0.1} Ce _{0.7} Y _{0.1} Yb _{0.1} O _{3â^îr} and Its Electrical Conductive Properties. Inorganic Chemistry, 2017, 56, 11876-11882.	1.9	12
68	Wet Atomisation of Gdâ€doped CeO ₂ Electrolyte Slurries for Intermediate Temperatures' Microtubular SOFC Applications. Fuel Cells, 2009, 9, 164-169.	1.5	11
69	Recent Development of Microceramic Reactors for Advanced Ceramic Reactor System. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	11
70	Decomposition reaction of BaZr _{0.1} Ce _{0.7} Y _{0.1} Yb _{0.1<!--<br-->in carbon dioxide atmosphere with nickel sintering aid. Journal of the Ceramic Society of Japan, 2017, 125, 247-251.}	sub>O&	lt;sub>3&a II
71	Chemical solution processing and properties of Sr2FeMoO6 thin films. Journal of Magnetism and Magnetic Materials, 2005, 295, 230-234.	1.0	10
72	Low temperature processed composite cathodes for Solid-oxide fuel Cells. International Journal of	3.8	10

Hydrogen Energy, 2011, 36, 10998-11003.

#	Article	IF	CITATIONS
73	Energy efficiency of a microtubular solid-oxide fuel cell. Journal of Power Sources, 2011, 196, 5485-5489.	4.0	10
74	Investigation of the microstructural effect of Ni–yttria stabilized zirconia anode for solid-oxide fuel cell using micro-beam X-ray absorption spectroscopy analysis. Journal of Power Sources, 2013, 222, 15-20.	4.0	10
75	Effect of Operating Temperature on Durability for Direct Butane Utilization of Microtubular Solid Oxide Fuel Cells. Electrochemistry, 2013, 81, 86-91.	0.6	10
76	Direct hydrocarbon utilization in microtubular solid oxide fuel cells. Journal of the Ceramic Society of Japan, 2015, 123, 213-216.	0.5	10
77	Additive effect of NiO on electrochemical properties of mixed ion conductor BaZr _{0.1} Ce _{0.7} Y _{0.1} Yb _{0.1Journal of the Ceramic Society of Japan, 2017, 125, 257-261.}	b& g 5;O&l	t;s ub >3&a
78	Anode performance control of micro-tubular SOFC via wet coating method. International Journal of Hydrogen Energy, 2011, 36, 7656-7660.	3.8	9
79	Direct Butane Utilization on Ni-(Y2O3)0.08(ZrO2)0.92-(Ce0.9Gd0.1)O1.95 Composite Anode-Supported Microtubular Solid Oxide Fuel Cells. Electrocatalysis, 2017, 8, 288-293.	1.5	9
80	Effects of Anode Microstructure on the Performances of Cathode-Supported Micro-SOFCs. Electrochemical and Solid-State Letters, 2009, 12, B151.	2.2	8
81	A reduced temperature solid oxide fuel cell with three-dimensionally ordered macroporous cathode. Journal of Power Sources, 2012, 212, 86-92.	4.0	8
82	Experimental and Simulated Evaluations of Current Collection Losses in Anode-Supported Microtubular Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F1232-F1236.	1.3	8
83	Microtubular solid-oxide fuel cells for low-temperature operation. MRS Bulletin, 2014, 39, 805-809.	1.7	7
84	Evaluation of micro flat-tube solid-oxide fuel cell modules using simple gas heating apparatus. Journal of Power Sources, 2014, 272, 730-734.	4.0	7
85	Dissociation behavior of protons incorporated in yttrium doped barium zirconate. Journal of Solid State Chemistry, 2017, 252, 22-27.	1.4	7
86	Development of a Portable SOFC System with Internal Partial Oxidation Reforming of Butane and Steam Reforming of Ethanol. ECS Transactions, 2017, 80, 71-77.	0.3	7
87	Metal-supported microtubular solid oxide fuel cells with ceria-based electrolytes. Journal of the Ceramic Society of Japan, 2017, 125, 208-212.	0.5	7
88	Concept, Manufacture and Results of the Microtubular Solid Oxide Fuel Cell. Transactions on Electrical and Electronic Materials, 2011, 12, 1-6.	1.0	7
89	Synthesis and Processing of Barium Hexaaluminogallates. Journal of the American Ceramic Society, 2001, 84, 1433-1438.	1.9	6
90	Properties of Sr2FeMoO6 thin films fabricated by the chemical solution deposition method. Solid State Communications, 2005, 133, 71-75.	0.9	6

#	Article	IF	CITATIONS
91	Development of Microtubular SOFCs. Journal of Fuel Cell Science and Technology, 2008, 5, .	0.8	6
92	Effect of the adding ferrum in nickel/GDC anode-supported solid-oxide fuel cell in the intermediate temperature. International Journal of Hydrogen Energy, 2011, 36, 10975-10980.	3.8	6
93	Effect of starting solution concentration in spray pyrolysis on powder properties and electrochemical electrode performance. Advanced Powder Technology, 2016, 27, 1438-1445.	2.0	6
94	Low Temperature Recycling Process for Barium Titanate Based Waste. Journal of the Ceramic Society of Japan, 2006, 114, 392-394.	1.3	5
95	Development of Honeycomb-type SOFCs with Accumulated Multi Micro-cells. ECS Transactions, 2007, 7, 657-662.	0.3	5
96	Fabrication and Properties of Honeycomb-type SOFCs Accumulated with Multi Micro-cells. ECS Transactions, 2007, 7, 651-656.	0.3	5
97	Investigation of shrinkage behavior of Ni–Fe bimetallic anode tube support and the densification of electrolyte using co-sintering temperature. Journal of Power Sources, 2011, 196, 9124-9129.	4.0	5
98	Performance of Niâ€based Anode‣upported <scp>SOFC</scp> s with Doped Ceria Electrolyte at Low Temperatures Between 294 and 542°C. International Journal of Applied Ceramic Technology, 2015, 12, 358-362.	1.1	5
99	High steam utilization operation with high current density in solid oxide electrolysis cells. Journal of the Ceramic Society of Japan, 2016, 124, 213-217.	0.5	5
100	Properties of Highly Oriented Rare-Earth-Ion-Substituted BaNb2O6Thin Films Synthesized by Chemical Solution Deposition. Japanese Journal of Applied Physics, 2003, 42, 5913-5917.	0.8	4
101	In-Situ Processing of Laminated Ceramic Composite for Electrochemical NOx Reduction System. Journal of the Ceramic Society of Japan, 2004, 112, 82-87.	1.3	4
102	Effect of Cathode Porosity on the Performances of Cathode Supported Honeycomb SOFCs. ECS Transactions, 2009, 25, 975-981.	0.3	4
103	Effect of microstructure on the conductivity of porous (La0.8Sr0.2)0.99MnO3. Journal of the Ceramic Society of Japan, 2009, 117, 895-898.	0.5	4
104	Novel Electrode-Supported Honeycomb Solid Oxide Fuel Cell: Design and Fabrication. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	4
105	Effects of Transitionâ€Metal Substitution on the Catalytic Properties of Barium Hexaaluminogallate. Journal of the American Ceramic Society, 2002, 85, 909-914.	1.9	3
106	Development of Fabrication/Integration Technology for Micro Tubular SOFCs. , 2009, , 141-177.		3
107	Effect of Anode Composition on the Performances of Cathode Supported Micro Channel SOFCs. ECS Transactions, 2009, 25, 939-943.	0.3	3
108	A Slurry Injection Method for the Fabrication of Multiple Microchannel SOFCs. Journal of the American Ceramic Society, 2009, 92, 1002-1005.	1.9	3

#	Article	IF	CITATIONS
109	Reactive-sintering of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2using alkaline earth peroxides for low-temperature synthesis. Journal of the Ceramic Society of Japan, 2017, 125, 681-685.}	o>O<	;sug>3&a
110	Challenge for the development of micro SOFC manufacturing technology. Synthesiology, 2011, 4, 36-45.	0.2	3
111	Interlayer modification for high-performance and stable solid oxide electrolysis cell. Materials Letters, 2022, 309, 131419.	1.3	3
112	Effect of the Fuel Flow Rate on the Performance of the Chip-Type SOFC Module. Journal of the Electrochemical Society, 2008, 155, B1296.	1.3	2
113	Low Temperature Operated SOFCs Using Ceria Based Electrolyte. Electrochemistry, 2009, 77, 134-136.	0.6	2
114	Wet preparation and characterization of ScSZ thin film electrolyte on micro-cathode supports. Journal of the Ceramic Society of Japan, 2009, 117, 139-142.	0.5	2
115	Development of Bi-Metal Anode Microtubular Supports for Solid Oxide Fuel Cells. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	2
116	Conductive glass sealants with Ag nanoparticles prepared by a heat reduction process. Journal of Non-Crystalline Solids, 2014, 394-395, 22-28.	1.5	2
117	Fabrication and characterization of YSZ thin films for SOFC application. Journal of the Ceramic Society of Japan, 2015, 123, 250-252.	0.5	2
118	Distribution of Relaxation Times Analysis for Optimization of Anode Thickness in Metal-Supported Microtubular Solid Oxide Fuel Cells. ECS Transactions, 2017, 78, 2151-2157.	0.3	2
119	DeNOx Properties of Barium Hexaaluminogallates Journal of the Ceramic Society of Japan, 2002, 110, 1-5.	1.3	1
120	Processing and Properties of Novel SrTiO ₃ Based Layered Film Varistor. Key Engineering Materials, 2004, 264-268, 1129-1134.	0.4	1
121	Synthesis of Hexaaluminogallate Catalysts for NOxReduction. Catalysis Letters, 2004, 97, 171-175.	1.4	1
122	Fabrication of Micro-Tubular SOFC Stack Using Ceramic Manifold. ECS Transactions, 2007, 7, 477-482.	0.3	1
123	Performance of Microtubular SOFCs Using Ethanol Fuel. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	1
124	Performance and Energy Efficiency of a Microtubular Solid Oxide Fuel Cell. ECS Transactions, 2011, 35, 425-430.	0.3	1
125	Application of catalytic layer on solid oxide fuel cell anode surface. Electrochemistry Communications, 2012, 15, 26-28.	2.3	1
126	Reversible Performance of Anode-Supported Proton-Conductive Solid Oxide Cell in Lower Temperature Range. ECS Transactions, 2013, 57, 3249-3253.	0.3	1

#	Article	IF	CITATIONS
127	Development of Microtubular SOFCs for Portable Power Sources. ECS Transactions, 2013, 57, 133-140.	0.3	1
128	Synthesis and Catalytic Properties of the Electrochemical NOxReduction System. Catalysis Letters, 2005, 103, 271-275.	1.4	0
129	Recent Development of Micro Ceramic Reactors for Advanced Ceramic Reactor System. , 2008, , .		Ο
130	Design and Fabrication of Novel Electrode-Supported SOFC Having Honeycomb Structure. , 2008, , .		0
131	Effect of PAA-NH ₄ Dispersant on Dispersibility of Aqueous Pb(Zr, Ti)O ₃ Slurries and Piezoelectric Properties of Resultant Sintered Bodies. Key Engineering Materials, 2009, 421-422, 103-106.	0.4	Ο
132	Development of Novel Honeycomb SOFCs for Intermediate Temperature Operation. Electrochemistry, 2009, 77, 137-139.	0.6	0
133	Performance and Energy Efficiency of a Single Microtubular Anode Supported Cell. ECS Meeting Abstracts, 2011, , .	0.0	0
134	Micro-Tubular SOFC Systems - Fabrication, Testing and Analysis of Micro-Tubular SOFC. ECS Transactions, 2011, 30, 129-133.	0.3	0
135	Anode-Supported Tubular SOFC at Low Temperature Using Ni, Fe, GDC, and YSZ Based Anode Support. ECS Transactions, 2011, 35, 705-711.	0.3	Ο
136	Fabrication and Evaluation of Micro-Tubular SOFC Stack. ECS Transactions, 2012, 45, 531-534.	0.3	0
137	4.å°åž‹SOFCã,∙ã,¹ãƒ†ãƒã₽ç¾çжãë今後ã₽å±∙望. Electrochemistry, 2012, 80, 267-270.	0.6	Ο
138	Transmission Electron Microscopy Observation of Nickel-Yttria Stabilized Zirconia Catalyst for Solid Oxide Fuel Cells in Methane Atmosphere. ECS Transactions, 2013, 57, 1455-1462.	0.3	0
139	The Properties and Performance of Micro-Tubular (Less Than 1 mm OD) Anode Supported SOFC for APU-Applications. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 391-406.	0.1	0
140	Electrical Properties of Ce0.8Gd0.2O1.9 Ceramics Prepared by an Aqueous Process. Ceramic Engineering and Science Proceedings, 0, , 95-103.	0.1	0
141	Formation of Gas Sealing and Current Collecting Layers for Honeycomb-Type SOFCs. Ceramic Engineering and Science Proceedings, 0, , 72-78.	0.1	0
142	Effects of Compositions and Microstructures of Thin Anode Layer on the Performance of Honeycomb SOFCs Accumulated with Multi Micro Channel Cells. Ceramic Engineering and Science Proceedings, 0, , 65-70.	0.1	0
143	The Properties and Performance of Micro-Tubular (Less than 1mm OD) Anode Supported Solid Oxide Fuel Cells. Ceramic Engineering and Science Proceedings, 0, , 29-39.	0.1	0
144	Development of Honeycomb-Type SOFC Integrated with Multi Micro Cells: Concept and Simulations. , 0, , 49-58.		0

#	Article	IF	CITATIONS
145	Fabrication and Optimization of Micro Tubular SOFCs for Cube-Type SOFC Stacks. , 0, , 25-32.		0
146	Development of Fabrication Technology for Honeycomb-Type SOFC with Integrated Multi Micro-Cells. , 0, , 41-47.		0
147	Nano-Composite Electrode Technology on Micro SOFC. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2015, 84, 193-195.	0.0	0