Ignacio Ugarte-Urra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/240521/publications.pdf

Version: 2024-02-01

36 papers 1,610 citations

20 h-index 345221 36 g-index

36 all docs

36 docs citations

36 times ranked 1032 citing authors

#	Article	IF	CITATIONS
1	Jets in Coronal Holes: <i>Hinode</i> Observations and Three-dimensional Computer Modeling. Astrophysical Journal, 2008, 673, L211-L214.	4.5	193
2	Full-Sun observations for identifying the source of the slow solar wind. Nature Communications, 2015, 6, 5947.	12.8	115
3	Spectroscopic Observations of Current Sheet Formation and Evolution. Astrophysical Journal, 2018, 854, 122.	4.5	112
4	ACTIVE REGION TRANSITION REGION LOOP POPULATIONS AND THEIR RELATIONSHIP TO THE CORONA. Astrophysical Journal, 2009, 695, 642-651.	4.5	100
5	The Magnetic Topology of Coronal Mass Ejection Sources. Astrophysical Journal, 2007, 662, 1293-1301.	4.5	91
6	Observations of Active Region Loops with the EUV Imaging Spectrometer on <i>Hinode</i> Astrophysical Journal, 2008, 686, L131-L134.	4.5	90
7	HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA. Astrophysical Journal Letters, 2013, 772, L19.	8.3	89
8	SOLAR CORONAL LOOPS RESOLVED BY <i>HINODE</i> AND THE <i>SOLAR DYNAMICS OBSERVATORY</i> Astrophysical Journal Letters, 2012, 755, L33.	8.3	80
9	Achievements of Hinode in the first eleven years. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	69
10	THE ABSOLUTE CALIBRATION OF THE EUV IMAGING SPECTROMETER ON <i>HINODE</i> Journal, Supplement Series, 2014, 213, 11.	7.7	64
11	An Investigation into the Variability of Heating in a Solar Active Region. Astrophysical Journal, 2006, 643, 1245-1257.	4.5	60
12	A STANDARD-TO-BLOWOUT JET. Astrophysical Journal Letters, 2011, 735, L18.	8.3	60
13	THE TEMPERATURE DEPENDENCE OF SOLAR ACTIVE REGION OUTFLOWS. Astrophysical Journal, 2011, 727, 58.	4.5	60
14	OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING. Astrophysical Journal, 2016, 817, 47.	4. 5	46
15	TEMPORAL VARIABILITY OF ACTIVE REGION OUTFLOWS. Astrophysical Journal, 2011, 730, 37.	4.5	41
16	DETERMINING HEATING TIMESCALES IN SOLAR ACTIVE REGION CORES FROM AIA/ <i>SDO</i> Fe XVIII IMAGES. Astrophysical Journal, 2014, 783, 12.	4. 5	35
17	MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS. Astrophysical Journal, 2015, 815, 90.	4.5	34
18	IS ACTIVE REGION CORE VARIABILITY AGE DEPENDENT?. Astrophysical Journal, 2012, 761, 21.	4.5	27

#	Article	IF	CITATIONS
19	Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal Heating. Astrophysical Journal, 2022, 926, 52.	4.5	25
20	Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions. Astrophysical Journal, 2022, 926, 53.	4.5	24
21	MODELING EVOLVING CORONAL LOOPS WITH OBSERVATIONS FROM <i>STEREO</i> , <i>HINODE</i> , AND <i>TRACE</i> . Astrophysical Journal, 2010, 713, 1095-1107.	4.5	21
22	Observations of Transient Active Region Heating with Hinode. Publication of the Astronomical Society of Japan, 2007, 59, S675-S681.	2.5	20
23	Hinode EUV Imaging Spectrometer Observations of Solar Active Region Dynamics. Publication of the Astronomical Society of Japan, 2007, 59, S713-S719.	2.5	17
24	Hinode EUV Imaging Spectrometer Observations of Active Region Loop Morphology: Implications for Static Heating Models of Coronal Emission. Publication of the Astronomical Society of Japan, 2007, 59, S691-S697.	2.5	16
25	The Role of Transient Brightenings in Heating the Solar Corona. Astrophysical Journal, 2008, 689, L77-L80.	4.5	16
26	The Magnetic Properties of Heating Events on High-temperature Active-region Loops. Astrophysical Journal, 2019, 877, 129.	4.5	15
27	CORRELATION OF CORONAL PLASMA PROPERTIES AND SOLAR MAGNETIC FIELD IN A DECAYING ACTIVE REGION. Astrophysical Journal, 2016, 826, 126.	4.5	14
28	Toward a Quantitative Comparison of Magnetic Field Extrapolations and Observed Coronal Loops. Astrophysical Journal, 2018, 860, 46.	4.5	14
29	Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating. Astrophysical Journal, 2017, 846, 165.	4.5	12
30	Dependence of Coronal Loop Temperature on Loop Length and Magnetic Field Strength. Astrophysical Journal, 2018, 868, 116.	4.5	12
31	Energetics and 3D Structure of Elementary Events in Solar Coronal Heating. Astrophysical Journal, 2021, 910, 84.	4.5	11
32	Observation and Modeling of High-temperature Solar Active Region Emission during the High-resolution Coronal Imager Flight of 2018 May 29. Astrophysical Journal, 2020, 896, 51.	4.5	10
33	A study of the long term evolution in active region upflows. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	9
34	Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops. Astrophysical Journal, 2022, 933, 106.	4.5	4
35	Analysis of a long-duration AR throughout five solar rotations: Magnetic properties and ejective events. Advances in Space Research, 2020, 65, 1641-1653.	2.6	2
36	Properties of EUV Imaging Spectrometer (EIS) Slot Observations. Solar Physics, 2022, 297, .	2.5	2