
Yoshikazu Todaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2405025/publications.pdf Version: 2024-02-01

YOSHIKAZU TODAKA

#	Article	IF	CITATIONS
1	Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining. Scripta Materialia, 2008, 59, 615-618.	2.6	140
2	Formation of Nanocrystalline Structure in Steels by Air Blast Shot Peening. Materials Transactions, 2003, 44, 1488-1493.	0.4	135
3	Production of TiNi amorphous/nanocrystalline wires with high strength and elastic modulus by severe cold drawing. Scripta Materialia, 2009, 60, 749-752.	2.6	124
4	Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 643-648.	2.6	118
5	Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion. Materials Science and Engineering C, 2013, 33, 2499-2507.	3.8	99
6	Elastic properties of single-crystalline ï‰ phase in titanium. Acta Materialia, 2013, 61, 7543-7554.	3.8	98
7	Comparison of Nanocrystalline Surface Layer in Steels Formed by Air Blast and Ultrasonic Shot Peening. Materials Transactions, 2004, 45, 376-379.	0.4	82
8	Formation of a nanocrystalline surface layer on steels by air blast shot peening. Journal of Materials Science, 2007, 42, 7716-7720.	1.7	73
9	Effect of Strain Path in High-Pressure Torsion Process on Hardening in Commercial Purity Titanium. Materials Transactions, 2008, 49, 47-53.	0.4	71
10	Role of strain reversal in grain refinement by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 427-433.	2.6	70
11	Influence of High-Pressure Torsion Straining Conditions on Microstructure Evolution in Commercial Purity Aluminum. Materials Transactions, 2008, 49, 7-14.	0.4	67
12	Texture evolution in pure aluminum subjected to monotonous and reversal straining in high-pressure torsion. Scripta Materialia, 2009, 60, 893-896.	2.6	67
13	Role of strain gradient on grain refinement by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 264-268.	2.6	63
14	Annealing behavior of nano-crystalline austenitic SUS316L produced by HPT. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 906-910.	2.6	55
15	Heterogeneous structure and mechanical hardness of biomedical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si16.gif" display="inline" overflow="scroll"><mml:mi>î²</mml:mi>-type Ti–29Nb–13Ta–4.6Zr subjected to high-pressure torsion. lournal of the Mechanical Behavior of Biomedical Materials. 2012. 10. 235-245.</mml:math 	1.5	53
16	A microstructural investigation of the surface of a drilled hole in carbon steels. Acta Materialia, 2007, 55, 1397-1406.	3.8	52
17	Heterogeneous nanostructure developed in heavily cold-rolled stainless steels and the specific mechanical properties. Scripta Materialia, 2017, 133, 33-36.	2.6	51
18	G-phase precipitation in austenitic stainless steel deformed by high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 194-198.	2.6	43

#	Article	IF	CITATIONS
19	Microstructural refinement and wear property of Al–Si–Cu composite subjected to extrusion and high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 377-384.	2.6	42
20	Sliding wear behavior of sub-microcrystalline pure iron produced by high-pressure torsion straining. Wear, 2015, 336-337, 58-68.	1.5	36
21	Microstructural evolution of precipitation-hardened β-type titanium alloy through high-pressure torsion. Acta Materialia, 2014, 80, 172-182.	3.8	33
22	Influence of isothermal ageing on mechanical behaviour in Ni-rich Ti–Zr–Ni shape memory alloy. Scripta Materialia, 2006, 55, 1079-1082.	2.6	32
23	Fabrication of CuZr(Al) bulk metallic glasses by high pressure torsion. Intermetallics, 2009, 17, 256-261.	1.8	32
24	Synthesis of non-equilibrium phases in immiscible metals mechanically mixed by high pressure torsion. Journal of Materials Science, 2011, 46, 4296-4301.	1.7	32
25	High temperature deformation behavior of bulk cementite produced by mechanical alloying and spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 894-898.	2.6	30
26	Nanocrystalline Surface Layer of Steels Produced by Shot Peening. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 690-696.	0.2	30
27	Characterization of Bulk Cementite Produced by Mechanical Alloying and Spark Plasma Sintering. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 607-614.	0.1	29
28	Formation of bimodal grain structures in high purity Al by reversal high pressure torsion. Scripta Materialia, 2011, 64, 498-501.	2.6	29
29	Fabrication of high strength Cu–NbC composite conductor by high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1750-1756.	2.6	29
30	Tensile Property of Submicrocrystalline Pure Fe Produced by HPT-Straining. Materials Science Forum, 0, 584-586, 597-602.	0.3	28
31	Effect of ethanol on the formation and properties of a Cu–NbC composite. Journal of Alloys and Compounds, 2010, 503, 228-232.	2.8	27
32	Microstructural Evolution during Isothermal Aging in Ni-Rich Ti-Zr-Ni Shape Memory Alloys. Materials Transactions, 2007, 48, 432-438.	0.4	26
33	Heterogeneous Process of Disordering and Structural Refinement in Ni ₃ Al during Severe Plastic Deformation by High-Pressure Torsion. Materials Transactions, 2010, 51, 14-22.	0.4	26
34	Formation of a metastable fcc phase and high Mg solubility in the Ti-Mg system by mechanical alloying. Powder Technology, 2020, 374, 348-352.	2.1	26
35	Synthesis of Ferrite Nanoparticles by Mechanochemical Processing Using a Ball Mill. Materials Transactions, 2003, 44, 277-284.	0.4	25
36	Formation of Nanocrystalline Structure at the Surface of Drill Hole in Steel. Materials Transactions, 2004. 45. 2209-2213.	0.4	25

#	Article	IF	CITATIONS
37	Formation of Surface Nanocrystalline Structure in Steels by Shot Peening and Role of Strain Gradient on Grain Refinement by Deformation. ISIJ International, 2007, 47, 157-162.	0.6	25
38	Thermoelectric Properties of Ca-Mg-Si Alloys. Materials Transactions, 2009, 50, 1725-1729.	0.4	25
39	Phase transformation kinetics of ω-phase in pure Ti formed by high-pressure torsion. Journal of Materials Science, 2016, 51, 2608-2615.	1.7	25
40	Developing biomedical nano-grained β-type titanium alloys using high pressure torsion for improved cell adherence. RSC Advances, 2016, 6, 7426-7430.	1.7	25
41	Nanocrystalline structure formation in carbon steel introduced by high speed drilling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 435-436, 383-388.	2.6	23
42	Improving the mechanical properties of Zr-based bulk metallic glass by controlling the activation energy for <i>l²</i> -relaxation through plastic deformation. Applied Physics Letters, 2014, 105, .	1.5	23
43	Strength and deformation behavior of bulky cementite synthesized by mechanical milling and plasma-sintering. Scripta Materialia, 2006, 54, 1925-1929.	2.6	22
44	Crystal Plasticity Simulation on Effect of Heterogeneous-nanostructure Induced by Severe Cold-rolling on Mechanical Properties of Austenitic Stainless Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 262-271.	0.1	22
45	Thermoelectric property of bulk CaMgSi intermetallic compound. Journal of Alloys and Compounds, 2017, 691, 914-918.	2.8	19
46	Tensile deformation characteristics of a Cuâ^'Niâ^'Si alloy containing trace elements processed by high-pressure torsion with subsequent aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 10-15.	2.6	19
47	Chemisorption enhancement of single carbon and oxygen atoms near the grain boundary on Fe surface: ab initio study. Applied Surface Science, 2019, 493, 1042-1047.	3.1	18
48	Low-temperature hydrogenation of Mg-Ni-Nb2O5 alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 2021, 878, 160309.	2.8	18
49	Solid-state amorphization of Cu + Zr multi-stacks by ARB and HPT techniques. Journal of Materials Science, 2008, 43, 7457-7464.	1.7	17
50	Inverse pole figure mapping of bulk crystalline grains in a polycrystalline steel plate by pulsed neutron Bragg-dip transmission imaging. Journal of Applied Crystallography, 2017, 50, 1601-1610.	1.9	17
51	Heterogeneous Nano-structure and its Evolution in Heavily Cold-rolled SUS316LN Stainless Steels. ISIJ International, 2020, 60, 582-589.	0.6	17
52	Two-body abrasive wear property of cementite. Wear, 2006, 260, 1090-1095.	1.5	16
53	Influences of Heterogeneous Nano-Structure Developed in Heavily Cold-Rolled Austenitic Stainless Steel on Texture and Ductility. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2017, 81, 536-541.	0.2	16
54	Change in Microstructure and Mechanical Properties of Steel Components Surface Layer. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2008, 94, 616-628.	0.1	15

#	Article	IF	CITATIONS
55	Fabrication of ZrAlNiCu bulk metallic glass composites containing pure copper particles by high-pressure torsion. Journal of Alloys and Compounds, 2010, 492, 149-152.	2.8	15
56	Cause of hardening and softening in the bulk glassy alloy Zr50Cu40Al10 after high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 171-181.	2.6	15
57	Synthesis of Fe-Cu Nanoparticles by Mechanochemical Processing Using a Ball Mill. Materials Transactions, 2002, 43, 667-673.	0.4	13
58	Formation of Nanocrystalline Structure in Steels by Air Blast Shot Peening and Particle Impact Processing. Materials Science Forum, 2004, 449-452, 1149-1152.	0.3	13
59	Mechanical behavior of a microsized pillar fabricated from ultrafine-grained ferrite evaluated by a microcompression test. Acta Materialia, 2014, 73, 12-18.	3.8	13
60	Orientation relationship between α-phase and high-pressure ω-phase of pure group IV transition metals. Scripta Materialia, 2015, 98, 1-4.	2.6	13
61	Dissolution of cementite in carbon steels by ball drop deformation and laser heating. Journal of Alloys and Compounds, 2007, 434-435, 497-500.	2.8	12
62	Nanocrystallization in Fe-C Alloys by Ball Milling and Ball Drop Test ISIJ International, 2002, 42, 1430-1437.	0.6	12
63	Thermoelectric Property of Na-Doped Mg2Si. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 693-697.	0.2	11
64	Effect of Nanocrystallization and Twinning on Hardness in Ni ₃ Al Deformed by High-Pressure Torsion. Materials Transactions, 2009, 50, 1123-1127.	0.4	11
65	Phase Transformation and Annealing Behavior of SUS 304 Austenitic Stainless Steel Deformed by High Pressure Torsion. Materials Science Forum, 0, 654-656, 334-337.	0.3	11
66	Property evolution on annealing deformed 304 austenitic stainless steel. Journal of Materials Science, 2012, 47, 8128-8133.	1.7	11
67	Heterogeneous grain refinement of biomedical Ti–29Nb–13Ta–4.6Zr alloy through high-pressure torsion. Scientia Iranica, 2013, 20, 1067-1067.	0.3	11
68	Effect of grain size on friction coefficient under oil lubrication in nanostructured Fe fabricated by PVD and SPD methods. Procedia Manufacturing, 2018, 15, 1693-1700.	1.9	11
69	Effect of Lattice Defects on Tribological Behavior for Low Friction Coefficient under Lubricant in Nanostructured Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2015, 101, 530-535.	0.1	11
70	Formation of Nanocrystalline Structure by Shot Peening. Materials Science Forum, 2006, 503-504, 669-674.	0.3	10
71	Role of strain gradient on the formation of nanocrystalline structure produced by severe plastic deformation. Journal of Alloys and Compounds, 2007, 434-435, 290-293.	2.8	10
72	Comparative Analysis of Plastic Flow and Grain Refinement in Pure Aluminium Subjected to Simple Shear-Based Severe Plastic Deformation Processing. Materials Transactions, 2012, 53, 17-25.	0.4	10

#	Article	IF	CITATIONS
73	Electronic and crystal structures of thermoelectric CaMgSi intermetallic compound. Journal of Electron Spectroscopy and Related Phenomena, 2016, 206, 18-23.	0.8	10
74	Nanostructure Of \hat{I}^2 -type Titanium Alloys Through Severe Plastic Deformation. Advanced Materials Letters, 2014, 5, 378-383.	0.3	10
75	Growth of Fe3O4 whiskers from solid solution nanoparticles of Fe–Cu and Fe–Ag systems produced by DC plasma jet method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 340, 114-122.	2.6	9
76	Revealing defect-induced spin disorder in nanocrystalline Ni. Physical Review Materials, 2021, 5, .	0.9	9
77	Anomalous magnetic anisotropy and magnetic nanostructure in pure Fe induced by high-pressure torsion straining. Physical Review Research, 2020, 2, .	1.3	9
78	Effect of Lattice Defects on Tribological Behavior for High Friction Coefficient under TCP Added PAO Lubrication in Nanostructured Steels. ISIJ International, 2020, 60, 1358-1365.	0.6	9
79	Nanocrystalline Structure in Steels Produced by Various Severe Plastic Deformation Processes. Materials Science Forum, 2006, 503-504, 11-18.	0.3	8
80	TEM investigation of intermediate phase transformation and micromodulation in Ni–Mn–Ga ferromagnetic shape memory alloys. Materials Science and Technology, 2008, 24, 920-926.	0.8	8
81	Microstructure and Mechanical Properties of a Biomedical β-Type Titanium Alloy Subjected to Severe Plastic Deformation after Aging Treatment. Key Engineering Materials, 0, 508, 152-160.	0.4	8
82	Effect of grain boundary on the friction coefficient of pure Fe under the oil lubrication. Tribology International, 2021, 155, 106781.	3.0	8
83	Heterogeneous Nano-structure and Its Evolution in Heavily Cold-rolled SUS316LN Stainless Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 254-261.	0.1	8
84	Influence of Heat Treatment on Phase Transformation of Ni-rich TiNi Foils Produced <i>via</i> Ultrafine Laminates. Materials Transactions, 2004, 45, 219-224.	0.4	7
85	Hydrogen Embrittlement of Submicrocrystalline Ultra-Low Carbon Steel Produced by High-Pressure Torsion Straining. Advanced Materials Research, 0, 89-91, 763-768.	0.3	7
86	Nanocrystallization of Drill Hole Surface by High Speed Drilling. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 601-604.	0.1	6
87	Phase Transformation and Magnetic Properties of Ferromagnetic Cu-Mn-Ga Alloys. Materials Transactions, 2007, 48, 2840-2846.	0.4	6
88	Tensile and fatigue properties of sub-microcrystalline ultra-low carbon steel produced by hpt-straining. International Journal of Materials Research, 2009, 100, 775-779.	0.1	6
89	Dry Sliding Wear Properties of Sub-Microcrystalline Ultra-Low Carbon Steel Produced by High-Pressure Torsion Straining. Materials Transactions, 2012, 53, 128-132.	0.4	6
90	Effect of high-pressure torsion processing on microstructure and mechanical properties of a novel biomedical I ² -type Ti-29Nb-13Ta-4.6Zr after cold rolling. International Journal of Microstructure and Materials Properties, 2012, 7, 168.	0.1	6

#	Article	IF	CITATIONS
91	Evolution of deformation texture of high-pressure ω-phases in pure Ti and Zr during high-pressure torsion straining. IOP Conference Series: Materials Science and Engineering, 2015, 82, 012020.	0.3	6
92	Partial Amorphization in B2 Type Shape Memory Alloys by Cold Rolling. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 283-288.	0.1	5
93	Microstructural Change of Cementite in Carbon Steels by Deformation. Materials Science Forum, 2004, 449-452, 525-528.	0.3	5
94	Comparison of Nanocrystallization in Steels by Ball Milling, Shot Peening and Drilling. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 571-576.	0.1	5
95	Role of Strain Gradient and Dynamic Transformation on the Formation of Nanocrystalline Structure Produced by Severe Plastic Deformation. Materials Science Forum, 2007, 539-543, 2787-2792.	0.3	5
96	Reversal Straining to Manage Structure in Pure Aluminum under SPD. Materials Science Forum, 0, 584-586, 133-138.	0.3	5
97	Influence of strain amount on stabilization of ï‰-phase in pure Ti by severe plastic deformation under high-pressure torsion. Journal of Physics: Conference Series, 2010, 240, 012113.	0.3	5
98	Synthesis of Ferrite Nanoparticles by Mechanochemical Processing using a Ball Mill. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2002, 66, 34-39.	0.2	4
99	Phase transformation, magnetic property and microstructure of Ni–Mn–Fe–Co–Ga ferromagnetic shape memory alloys. Journal of Magnetism and Magnetic Materials, 2007, 310, 2764-2766.	1.0	4
100	Work-Softening, High Pressure Phase Formation and Powder Consolidation by HPT. Materials Science Forum, 2010, 654-656, 1205-1210.	0.3	4
101	Cutting and rubbing process for a Ti-6Al-4V alloys, and its effects. Transactions of the JSME (in) Tj ETQq1 1 0.78	4314 rgBT 0.1	- /Oyerlock 10
102	Effects of Natural Aging on Age-Hardening Behavior of Cu-Be-Co and Cu-Ti Alloys Severely Deformed by High-Pressure Torsion. Materials Transactions, 2017, 58, 1346-1350.	0.4	4
103	Mechanical properties and plastic deformation behavior of severely deformed pure Fe. Procedia Manufacturing, 2018, 15, 1495-1501.	1.9	4
104	Friction Property under Lubrication for Case Hardening Steel Subjected to Combined Thermomechanical Treatment with Excess Vacuum Carburizing and Subsequent Severe Plastic Deformation and Induction Hardening. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 194-204.	0.1	4
105	Adsorption enhancement of a fatty acid on iron surface with Σ3(1 1 1) grain boundary. Applied Surface Science, 2021, 543, 148604.	3.1	4
106	Increase of the mechanical response of pure aluminum by grain refinement retained with an alternative rapid sintering route. Journal of Materials Research, 2021, 36, 1328-1340.	1.2	4
107	Hydrogen Permeation Property of Bulk Cementite. ISIJ International, 2021, 61, 2320-2322.	0.6	4
108	Role of higher-order effects in spin-misalignment small-angle neutron scattering of high-pressure torsion nickel. Physical Review Materials, 2021, 5, .	0.9	4

Yoshikazu Todaka

#	Article	IF	CITATIONS
109	Fatigue Fracture of Duplex Stainless Steel with Heterogeneous Nanostructure by Heavy Cold Rolling. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 272-281.	0.1	4
110	Theoretical and Experimental Study of CaMgSi Thermoelectric Properties. ACS Omega, 2022, 7, 15451-15458.	1.6	4
111	Production of Fe-Cu Ultrafine Particles by Plasma Jet Method. Materials Science Forum, 2000, 343-346, 525-530.	0.3	3
112	Synthesis of Fe-Cu ultrafine particles by mechanochemical processing and their characterization. Scripta Materialia, 2001, 44, 1797-1801.	2.6	3
113	Nanostructures of Ti-Ni-N ultrafine particles produced by DC plasma jet method. Scripta Materialia, 2001, 44, 2273-2277.	2.6	3
114	Influence of Shot Peening Condition on Surface Amorphization/Nanocrystallization in TiNi Shape Memory Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 473-477.	0.2	3
115	Dissolution of Cementite in Carbon Steels by Heavy Deformation and Laser Heat Treatment. Materials Science Forum, 2006, 503-504, 461-468.	0.3	3
116	Strain Gradient Hardening and Pressure Induced Phase Transformation of Metals by HPT. Materials Science Forum, 0, 584-586, 493-500.	0.3	3
117	Influence of Hydrogen on Local Mechanical Properties of Pure Fe with Different Dislocation Densities Investigated by Electrochemical Nanoindentation. ISIJ International, 2016, 56, 2298-2303.	0.6	3
118	Phase transformation in Fe–Mn–C alloys by severe plastic deformation under high pressure. Materials Letters, 2016, 185, 109-111.	1.3	3
119	Microstructure and Wear Properties of High-Pressure Torsion Processed Iron. Materials Science Forum, 2017, 890, 371-374.	0.3	3
120	Effect of Lattice Defects on Tribological Behavior for High Friction Coefficient under TCP added PAO Lubrication in Nanostructured Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 282-289.	0.1	3
121	Impact Property of Case Hardening Steel Subjected to Combined Heat Treatment with Excess Vacuum Carburizing and Subsequent Induction Hardening. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 837-846.	0.1	3
122	Analysis and Mapping of Detailed Inner Information of Crystalline Grain by Wavelength-Resolved Neutron Transmission Imaging with Individual Bragg-Dip Profile-Fitting Analysis. Applied Sciences (Switzerland), 2021, 11, 5219.	1.3	3
123	Phase Transformation and Magnetic Properties in Ni52FexMn21â~'xGa27 Alloys. ISIJ International, 2006, 46, 1283-1286.	0.6	3
124	Comparison of Nanocrystallization in Steels by Ball Milling and Ball Drop Test. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 193-198.	0.1	2
125	Phase Transformation and Magnetic Properties of Ferromagnetic Cu-Mn-Ga Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 849-855.	0.2	2
126	Formation of Ultrafine-grained Structure at Drill-hole Surface of Martensitic Steels by High-speed Drilling and Their Mechanical Properties. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2010, 96, 21-28.	0.1	2

#	Article	IF	CITATIONS
127	Mechanical Behavior on Micro-compression Test in Ultra-low Carbon Steel Produced by High Pressure Torsion. Materials Research Society Symposia Proceedings, 2011, 1297, 169.	0.1	2
128	Crystal Plasticity Simulation Considering Microstructures of Austenitic Stainless Steel on Macroscopic Yield Function. Materials Science Forum, 2018, 941, 212-217.	0.3	2
129	Analytical approach for pop-in and post-pop-in deformation behavior during nanoindentation: effect of solute Si in interstitial free steel. Journal of Materials Research, 2021, 36, 2571-2581.	1.2	2
130	Macroscopic viscoelastic deformation at room temperature in mechanically rejuvenated Zr-based metallic glass. MRS Communications, 2021, 11, 330-335.	0.8	2
131	Growth of Fe Oxide Whisker from Fe-Cu and Fe-Ag Supersaturated Solid Solution Nanoparticles. Materials Science Forum, 2002, 386-388, 269-274.	0.3	1
132	Surface Amorphization of TiNi Shape Memory Alloy by Shot Peening. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 615-618.	0.1	1
133	Nanocrystallization of Martensite Steels and Ti-6Al-4V Alloy by Shot Peening. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 471-474.	0.1	1
134	Evaluation of joint interface of friction stir welding between dissimilar metals using HTS-SQUID gradiometer. Physica C: Superconductivity and Its Applications, 2010, 470, 1524-1528.	0.6	1
135	Magnetic Characterization of SUS316L Deformed by High Pressure Torsion. Advanced Materials Research, 0, 239-242, 1300-1303.	0.3	1
136	Structure and thermoelectric property of bulk CaMgSi intermetallic compound. AIP Conference Proceedings, 2017, , .	0.3	1
137	Effect of One-Pass Strain on Steady-State Grain Size by Cyclic - HPT Straining. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2021, 85, 67-74.	0.2	1
138	Effect of hetero- and homo-nanostructure on the hydrogen embrittlement resistance in heavily deformed 316LN austenitic stainless steel. MRS Advances, 2021, 6, 682-688.	0.5	1
139	Pressure-induced Phase Transformation Behavior in ^ ^alpha;-Mn Steels by High-pressure Torsion Straining. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2012, 98, 541-547.	0.1	1
140	Effect of Aging on Microstructure and Martensitic Transformation in Ti-Zr-Ni Shape Memory Alloys. Materials Science Forum, 0, , 3163-3168.	0.3	1
141	Dissolution of Cementite in Carbon Steels by Heavy Deformation and Laser Heat Treatment. Materials Science Forum, 0, , 461-468.	0.3	1
142	Nanocrystalline Structure in Steels Produced by Various Severe Plastic Deformation Processes. Materials Science Forum, 0, , 11-18.	0.3	1
143	Finite element analysis on rolling contact fatigue of surface nanostructured steel (Effect of friction) Tj ETQq1 86, 19-00270-19-00270.	1 0.784314 r 0.1	gBT /Overlo 1
144	Crack Propagation Behavior of Impact Fracture in Case Hardening Steel Subjected to Combined Heat Treatment with Excess Vacuum Carburizing and Subsequent Induction Hardening. ISIJ International, 2020, 60, 2576-2585.	0.6	1

#	Article	IF	CITATIONS
145	Effect of Deformation Prior to Nitriding on Microstructure and Hardness Behavior in Plasma-Nitrided Ferritic Alloys. Materials Transactions, 2022, 63, 864-871.	0.4	1
146	Nanostructures of Ti-Ni-N Ultrafine Particles Produced by DC Plasma Jet Method. Materials Science Forum, 2001, 360-362, 391-396.	0.3	0
147	Surface Amorphization in Intermetallic Compounds by Shot Peening. Materials Science Forum, 2004, 449-452, 197-200.	0.3	0
148	Nanocrystallization in Carbon Steels by Various Severe Plastic Deformation Processes. , 2005, , 505-510.		0
149	Deformation and Dissolution of Cementite by Severe Plastic Deformation. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 157-160.	0.1	0
150	Anomalous Property Evolution during Annealing in HPTed SUS 304 Austenitic Stainless Steel. Materials Science Forum, 2010, 667-669, 589-592.	0.3	0
151	Radiographic and Tomographic Neutron Bragg Imaging for Quantitative Visualization of Wide Area Crystalline Structural Information. Materials Science Forum, 0, 783-786, 2109-2114.	0.3	0
152	Nanostructure and Fatigue Behavior of <i>β-</i> Type Titanium Alloy Subjected to High-Pressure Torsion after Aging Treatment. Advanced Materials Research, 0, 891-892, 9-14.	0.3	0
153	Electrochemical Behaviors of Biomedical Nanograined <i>β</i> -Type Titanium Alloys. Materials Science Forum, 2016, 879, 2549-2554.	0.3	Ο
154	Microstructure and Tribological Properties of Sub-Microcrystalline Carbon Steel Produced by Severe Plastic Deformation. Applied Mechanics and Materials, 0, 876, 3-8.	0.2	0
155	Wear and Adhesion Properties of High-Pressure Torsion Processed Carbon Steel. Key Engineering Materials, 0, 846, 157-161.	0.4	0
156	Nanostructural Characterization of Oleyl Acid Phosphate in Poly-α-olefin Using Small-angle X-ray Scattering. Chemistry Letters, 2020, 49, 823-825.	0.7	0
157	Promotion Effect of Hydrogen on Grain Refinement in Pure Fe by High-Pressure Torsion-Straining. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4749.	1.1	0
158	Microstructural Changes of Cementite in Pearlite Steel by Cold Rolling. Materia Japan, 2004, 43, 1022-1022.	0.1	0
159	Development of Shape Memory Actuator for Cryogenic Application. , 2010, , 413-423.		0
160	S0201-1-4 Change in microstructure and mechanical properties of β-type Ti-29Nb-13Ta-4.6Zr by high-pressure torsion. The Proceedings of the JSME Annual Meeting, 2010, 2010.5, 17-18.	0.0	0
161	OS2314 Rolling contact fatigue behavior of S45C tempered martensite steel with ultra-fine grained structure by surface severe plastic deformation and super rapid induction heating and quenching. The Proceedings of the Materials and Mechanics Conference, 2011, 2011, _OS2314-1OS2314-2	0.0	0
162	420 Improvement of Mechanical Biocompatibility in Ti-29Nb-13Ta-4.6Zr through High Pressure Torsion for Biomedical Applications. The Proceedings of the Materials and Processing Conference, 2012, 2012.20, _420-1420-2	0.0	0

#	Article	IF	CITATIONS
163	419 Microstructural evaluation of β-type Ti-29Nb-13Ta-4.6Zr through high-pressure torsion after cold rolling and aging treatment. The Proceedings of the Materials and Processing Conference, 2012, 2012.20, _419-1419-5	0.0	0
164	207 Effects of high-pressure torsion on corrosion behaviors of biomedical p-type titanium alloy in simulated body fluids. The Proceedings of the Materials and Processing Conference, 2013, 2013.21, _207-1207-5	0.0	0
165	Lower and Higher Friction Coefficients under Oil Lubrication Based on Microstructure Control in Steels. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2020, 71, 756-762.	0.1	0
166	Effect of Fe Content on Steady-State Grain Size in Ni-Fe Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2022, 86, .	0.2	0
167	Effect of Surface Nano-crystalline Layer Formed by Heavy Plastic Deformation Process on Rolling Contact Fatigue. ISIJ International, 2022, , .	0.6	0
168	Deformation Texture of Bulk Cementite Investigated by Neutron Diffraction. Materials, 2022, 15, 4485.	1.3	0