
Zhenfeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/240469/publications.pdf Version: 2024-02-01

ZHENEENCLU

#	Article	IF	CITATIONS
1	Supramolecular assembly of chloroplast NADH dehydrogenase-like complex with photosystem I from Arabidopsis thaliana. Molecular Plant, 2022, 15, 454-467.	8.3	19
2	Phospholipid translocation captured in a bifunctional membrane protein MprF. Nature Communications, 2021, 12, 2927.	12.8	21
3	Plant and Algal PSII–LHCII Supercomplexes: Structure, Evolution and Energy Transfer. Plant and Cell Physiology, 2021, 62, 1108-1120.	3.1	11
4	Structural basis of LhcbM5-mediated state transitions in green algae. Nature Plants, 2021, 7, 1119-1131.	9.3	43
5	TMEM120A contains a specific coenzyme A-binding site and might not mediate poking- or stretch-induced channel activities in cells. ELife, 2021, 10, .	6.0	20
6	The phosphatidylglycerol phosphate synthase PgsA utilizes a trifurcated amphipathic cavity for catalysis at the membrane-cytosol interface. Current Research in Structural Biology, 2021, 3, 312-323.	2.2	11
7	Structural analysis and comparison of light-harvesting complexes I and II. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148038.	1.0	66
8	Assembly of eukaryotic photosystem II with diverse light-harvesting antennas. Current Opinion in Structural Biology, 2020, 63, 49-57.	5.7	14
9	Cryoâ€electron microscopy structure of <scp>CLHM1</scp> ion channel from <scp><i>Caenorhabditis elegans</i></scp> . Protein Science, 2020, 29, 1803-1815.	7.6	11
10	Structural basis for energy and electron transfer of the photosystem l–IsiA–flavodoxin supercomplex. Nature Plants, 2020, 6, 167-176.	9.3	48
11	Structures of the Mitochondrial CDP-DAG Synthase Tam41 Suggest a Potential Lipid Substrate Pathway from Membrane to the Active Site. Structure, 2019, 27, 1258-1269.e4.	3.3	15
12	Antenna arrangement and energy transfer pathways of a green algal photosystem-l–LHCI supercomplex. Nature Plants, 2019, 5, 273-281.	9.3	127
13	Structural Insights into Substrate Selectivity, Catalytic Mechanism, and Redox Regulation of Rice Photosystem II Core Phosphatase. Molecular Plant, 2019, 12, 86-98.	8.3	18
14	Structural insight into light harvesting for photosystem II in green algae. Nature Plants, 2019, 5, 1320-1330.	9.3	112
15	Structure, assembly and energy transfer of plant photosystem II supercomplex. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 633-644.	1.0	46
16	Thermodynamics of voltage-gated ion channels. Biophysics Reports, 2018, 4, 300-319.	0.8	22
17	Structural roles of lipid molecules in the assembly of plant PSIIâ^'LHCII supercomplex. Biophysics Reports, 2018, 4, 189-203.	0.8	26
18	Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science, 2018, 360, 1109-1113.	12.6	159

ZHENFENG LIU

#	Article	IF	CITATIONS
19	Structure and assembly mechanism of plant C ₂ S ₂ M ₂ -type PSII-LHCII supercomplex. Science, 2017, 357, 815-820.	12.6	291
20	lon- and water-binding sites inside an occluded hourglass pore of a trimeric intracellular cation (TRIC) channel. BMC Biology, 2017, 15, 31.	3.8	4
21	Structure of spinach photosystem II–LHCII supercomplex at 3.2 à resolution. Nature, 2016, 534, 69-74.	27.8	469
22	Pore architecture of TRIC channels and insights into their gating mechanism. Nature, 2016, 538, 537-541.	27.8	41
23	From membrane tension to channel gating: A principal energy transfer mechanism for mechanosensitive channels. Protein Science, 2016, 25, 1954-1964.	7.6	25
24	Structural Mechanism Underlying the Specific Recognition between the Arabidopsis State-Transition Phosphatase TAP38/PPH1 and Phosphorylated Light-Harvesting Complex Protein Lhcb1. Plant Cell, 2015, 27, 1113-1127.	6.6	33
25	Mechanical coupling of the multiple structural elements of the large-conductance mechanosensitive channel during expansion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10726-10731.	7.1	41
26	Crystal structures of the PsbS protein essential for photoprotection in plants. Nature Structural and Molecular Biology, 2015, 22, 729-735.	8.2	125
27	Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis. Nature Communications, 2014, 5, 4244.	12.8	51
28	Structure of the catalytic domain of a state transition kinase homolog from Micromonas algae. Protein and Cell, 2013, 4, 607-619.	11.0	11
29	Architecture and function of plant light-harvesting complexes II. Current Opinion in Structural Biology, 2013, 23, 515-525.	5.7	77
30	A reported archaeal mechanosensitive channel is a structural homolog of MarRâ€like transcriptional regulators. Protein Science, 2010, 19, 808-814.	7.6	7
31	Structure of a tetrameric MscL in an expanded intermediate state. Nature, 2009, 461, 120-124.	27.8	105
32	Crystallization Methods of Membrane Proteins: Practical Aspects of Crystallizing Plant Light-Harvesting Complexes. Advances in Photosynthesis and Respiration, 2008, , 77-96.	1.0	0
33	Two lutein molecules in LHCII have different conformations and functions: Insights into the molecular mechanism of thermal dissipation in plants. Biochemical and Biophysical Research Communications, 2007, 355, 457-463.	2.1	62
34	Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature, 2005, 436, 134-137.	27.8	569
35	Crystal structure of spinach major light-harvesting complex at 2.72 à resolution. Nature, 2004, 428, 287-292.	27.8	1,589
36	Three-Dimensional Structure of Spinach Major Light-Harvesting Complex. Nihon Kessho Gakkaishi, 2004, 46, 19-19.	0.0	0