
Juan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/240463/publications.pdf Version: 2024-02-01

ΙΠΑΝ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Single-walled carbon nanotube based SERS substrate with single molecule sensitivity. Nano Research, 2022, 15, 694-700.	10.4	21
2	Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chemical Reviews, 2020, 120, 2693-2758.	47.7	278
3	Electronic Raman Scattering in Suspended Semiconducting Carbon Nanotube. Journal of Physical Chemistry Letters, 2020, 11, 10497-10503.	4.6	5
4	Tailoring the electrocatalytic oxygen reduction reaction pathway by tuning the electronic states of single-walled carbon nanotubes. Carbon, 2019, 147, 35-42.	10.3	11
5	Toward Complete Resolution of DNA/Carbon Nanotube Hybrids by Aqueous Two-Phase Systems. Journal of the American Chemical Society, 2019, 141, 20177-20186.	13.7	45
6	Selective growth of chirality-enriched semiconducting carbon nanotubes by using bimetallic catalysts from salt precursors. Nanoscale, 2018, 10, 6922-6927.	5.6	21
7	Diameter-specific growth of single-walled carbon nanotubes using tungsten supported nickel catalysts. Carbon, 2017, 118, 485-492.	10.3	19
8	Bilayer Plots for Accurately Determining the Chirality of Single-Walled Carbon Nanotubes Under Complex Environments. ACS Nano, 2017, 11, 10509-10518.	14.6	10
9	Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes. ACS Nano, 2017, 11, 186-193.	14.6	100
10	The dispersion and aggregation of graphene oxide in aqueous media. Nanoscale, 2016, 8, 14587-14592.	5.6	95
11	Chiralityâ€Selective Photoluminescence Enhancement of ssDNAâ€Wrapped Singleâ€Walled Carbon Nanotubes Modified with Gold Nanoparticles. Small, 2016, 12, 3164-3171.	10.0	11
12	Targeted Raman Imaging of Cells Using Graphene Oxide-Based Hybrids. Langmuir, 2016, 32, 10253-10258.	3.5	15
13	(n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering. ACS Nano, 2016, 10, 10789-10797.	14.6	27
14	Multiple electronic Raman scatterings in a single metallic carbon nanotube. Physical Review B, 2016, 93, .	3.2	11
15	Templated Synthesis of Single-Walled Carbon Nanotubes with Specific Structure. Accounts of Chemical Research, 2016, 49, 606-615.	15.6	94
16	Preparation and electrocatalytic properties of triuranium octoxide supported on reduced graphene oxide. Nano Research, 2015, 8, 546-553.	10.4	17
17	Graphene Oxide as a Multifunctional Platform for Raman and Fluorescence Imaging of Cells. Small, 2015, 11, 3000-3005.	10.0	33
18	Deformation of singleâ€walled carbon nanotubes by interaction with graphene: A firstâ€principles study. Journal of Computational Chemistry, 2015, 36, 717-722.	3.3	8

Juan Yang

#	Article	IF	CITATIONS
19	Growing Zigzag (16,0) Carbon Nanotubes with Structure-Defined Catalysts. Journal of the American Chemical Society, 2015, 137, 8688-8691.	13.7	118
20	(n,m) Assignments and quantification for single-walled carbon nanotubes on SiO ₂ /Si substrates by resonant Raman spectroscopy. Nanoscale, 2015, 7, 10719-10727.	5.6	48
21	Radial deformation of single-walled carbon nanotubes on quartz substrates and the resultant anomalous diameter-dependent reaction selectivity. Nano Research, 2015, 8, 3054-3065.	10.4	6
22	Anisotropic Etching of Graphite Flakes with Water Vapor to Produce Armchairâ€Edged Graphene. Small, 2014, 10, 2809-2814.	10.0	23
23	Carbon nanotube-wired and oxygen-deficient MoO 3 nanobelts with enhanced lithium-storage capability. Journal of Power Sources, 2014, 247, 90-94.	7.8	92
24	One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Research, 2014, 7, 765-773.	10.4	105
25	Growth of Semiconducting Single-Walled Carbon Nanotubes by Using Ceria as Catalyst Supports. Nano Letters, 2014, 14, 512-517.	9.1	80
26	Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 2014, 510, 522-524.	27.8	677
27	Diameter-controlled growth of aligned single-walled carbon nanotubes on quartz using molecular nanoclusters as catalyst precursors. Science Bulletin, 2013, 58, 433-439.	1.7	16
28	Dispersing Carbon-Based Nanomaterials in Aqueous Phase by Graphene Oxides. Langmuir, 2013, 29, 13527-13534.	3.5	34
29	Composites of Functional Poly(phenylacetylene)s and Single-Walled Carbon Nanotubes: Preparation, Dispersion, and Near Infrared Photoresponsive Properties. Macromolecules, 2013, 46, 8479-8487.	4.8	29
30	Quantitative analysis of the (n,m) abundance of single-walled carbon nanotubes dispersed in ionic liquids by optical absorption spectra. Materials Chemistry and Physics, 2013, 139, 233-240.	4.0	10
31	Spectroscopic Characterization of the Chiral Structure of Individual Singleâ€Walled Carbon Nanotubes and the Edge Structure of Isolated Graphene Nanoribbons. Small, 2013, 9, 1284-1304.	10.0	32
32	Photoluminescence from Exciton Energy Transfer of Single-Walled Carbon Nanotube Bundles Dispersed in Ionic Liquids. Journal of Physical Chemistry C, 2012, 116, 22028-22035.	3.1	16
33	Structure Dependence of the Intermediate-Frequency Raman Modes in Isolated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 23826-23832.	3.1	13
34	Cell imaging by graphene oxide based on surface enhanced Raman scattering. Nanoscale, 2012, 4, 7084.	5.6	109
35	Surface-Enhanced Raman Spectroscopy of Carbon Nanotubes in Aqueous Solution. Acta Chimica Sinica, 2012, 70, 1533.	1.4	3
36	How to remove the influence of trace water from the absorption spectra of SWNTs dispersed in ionic liquids. Beilstein Journal of Nanotechnology, 2011, 2, 653-658.	2.8	8

Juan Yang

#	Article	IF	CITATIONS
37	Visualization of individual single-walled carbon nanotubes under an optical microscope as a result of decoration with gold nanoparticles. Carbon, 2011, 49, 1182-1188.	10.3	19
38	SPLAT II: An Aircraft Compatible, Ultra-Sensitive, High Precision Instrument for In-Situ Characterization of the Size and Composition of Fine and Ultrafine Particles. Aerosol Science and Technology, 2009, 43, 411-424.	3.1	86
39	Achieving Size Independent Hit-Rate in Single Particle Mass Spectrometry. Aerosol Science and Technology, 2009, 43, 305-310.	3.1	19
40	Single wall diesel particulate filter (DPF) filtration efficiency studies using laboratory generated particles. Chemical Engineering Science, 2009, 64, 1625-1634.	3.8	96
41	Comparison between mass spectra of individual organic particles generated by UV laser ablation and in the IR/UV two-step mode. International Journal of Mass Spectrometry, 2009, 282, 6-12.	1.5	20
42	A New Real-Time Method for Determining Particles' Sphericity and Density: Application to Secondary Organic Aerosol Formed by Ozonolysis of α-Pinene. Environmental Science & Technology, 2008, 42, 8033-8038.	10.0	56
43	"Depth-Profiling―and Quantitative Characterization of the Size, Composition, Shape, Density, and Morphology of Fine Particles with SPLAT, a Single-Particle Mass Spectrometer. Journal of Physical Chemistry A, 2008, 112, 669-677.	2.5	43
44	Fluorescence and Ultraviolet Absorption Spectra, and the Structure and Vibrations of 1,2,3,4-Tetrahydronaphthalene in Its S1(Ï€,Ï€*) State. Journal of Physical Chemistry A, 2007, 111, 8429-8438.	2.5	21
45	Laser induced fluorescence and ultraviolet absorption spectra and the ring-puckering potential function of 1,4-dihydronaphthalene in its ground and S1(ï€, ï€â^—) electronic states. Chemical Physics Letters, 2007, 442, 182-186.	2.6	7
46	Spectroscopic determination of vibrational potential energy surfaces in ground and excited electronic states. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 45-50.	1.7	1
47	Theoretical calculations and vibrational spectra of 1,4-benzodioxan in its S1(π, π*) electronic excited state. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 1170-1173.	3.9	11
48	Laser-Induced Fluorescence Spectra, Structure, and the Ring-Twisting and Ring-Bending Vibrations of 1,4-Benzodioxan in Its S0and S1(Ï€,Ï€*) States. Journal of Physical Chemistry A, 2006, 110, 9805-9815.	2.5	19
49	Calculation of kinetic energy functions for the ring-twisting and ring-bending vibrations of tetralin and related molecules. Journal of Molecular Structure, 2006, 798, 27-33.	3.6	10
50	Fluorescence and ultraviolet absorption spectra and structure of coumaran and its ring-puckering potential energy function in the S1(Ï€,Ï€*) excited state. Journal of Chemical Physics, 2006, 125, 034308.	3.0	8
51	Synthesis, Raman spectrum, ab initio calculations, and structure of 3,7-dioxabicyclo[3.3.0]oct-1,5-ene. Journal of Molecular Structure, 2005, 742, 161-164.	3.6	6
52	S0 Ring-Puckering Potential Energy Function for Coumaran. Journal of Physical Chemistry A, 2005, 109, 8290-8292.	2.5	10
53	Vibrational frequencies and structure of cyclopropenone from ab initio calculations. Journal of Molecular Structure, 2004, 695-696, 339-343.	3.6	19
54	Vibrational spectra and DFT calculations of tetralin and 1,4-benzodioxan. Journal of Molecular Structure, 2003, 661-662, 23-32.	3.6	25

#	Article	IF	CITATIONS
55	Detection of Offâ€Resonance Singleâ€Walled Carbon Nanotubes by Enormous Surfaceâ€Enhanced Raman Scattering. Advanced Optical Materials, 0, , 2100559.	7.3	2