
Lidiya Komsiyska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2404499/publications.pdf Version: 2024-02-01

LIDIVA KOMSIVSKA

#	Article	IF	CITATIONS
1	Influence of Switching on the Aging of High Power Lithium-Ion Cells. Batteries, 2022, 8, 33.	4.5	3
2	Influence of heat pipe assisted terminal cooling on the thermal behavior of a large prismatic lithium-ion cell during fast charging in electric vehicles. Applied Thermal Engineering, 2021, 188, 116328.	6.0	22
3	Advanced Monitoring and Prediction of the Thermal State of Intelligent Battery Cells in Electric Vehicles by Physics-Based and Data-Driven Modeling. Batteries, 2021, 7, 31.	4.5	26
4	Thermal Effects of Bad-Block-Management in an Intelligent Automotive Lithium-ion Battery Module based on lumped 3D Electro-Thermal Modeling. , 2021, , .		0
5	Experimental Study on the Thermal Interactions in Novel Intelligent Lithium-Ion Modules for Electric Vehicles. , 2021, , .		1
6	Real-time core temperature prediction of prismatic automotive lithium-ion battery cells based on artificial neural networks. Journal of Energy Storage, 2021, 39, 102588.	8.1	27
7	Thermal behavior of intelligent automotive lithium-ion batteries: Operating strategies for adaptive thermal balancing by reconfiguration. Journal of Energy Storage, 2021, 40, 102686.	8.1	7
8	Critical Review of Intelligent Battery Systems: Challenges, Implementation, and Potential for Electric Vehicles. Energies, 2021, 14, 5989.	3.1	52
9	Thermal behavior of intelligent automotive lithium-ion batteries: Experimental study with switchable cells and reconfigurable modules. Journal of Energy Storage, 2021, 44, 103274.	8.1	4
10	Thermal Modelling of a Prismatic Lithium-Ion Cell in a Battery Electric Vehicle Environment: Influences of the Experimental Validation Setup. Energies, 2020, 13, 62.	3.1	26
11	Passive impedance spectroscopy for monitoring lithium-ion battery cells during vehicle operation. Journal of Power Sources, 2020, 449, 227297.	7.8	43
12	Application of nonlinear impedance spectroscopy for the diagnosis of lithium-ion battery cells under various operating conditions. Journal of Power Sources, 2020, 480, 228673.	7.8	12
13	Thermal Behavior of an Intelligent Li-Ion Cell under Vehicle Conditions. , 2020, , .		7
14	Modelling of 3D Temperature Behavior of Prismatic Lithium-Ion Cell With Focus on Experimental Validation Under Battery Electric Vehicle Conditions. , 2019, , .		3
15	Corrosion of Graphite-Polypropylene Current Collectors during Overcharging in Negative and Positive Vanadium Redox Flow Battery Half-Cell Electrolytes. Journal of the Electrochemical Society, 2018, 165, A963-A969.	2.9	14
16	Porous-Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries. Applied Surface Science, 2018, 450, 301-311.	6.1	85
17	Electrode materials for electrochemical capacitors based on poly(3,4 ethylenedioxythiophene) and functionalized multi-walled carbon nanotubes characterized in aqueous and aprotic electrolytes. Synthetic Metals, 2018, 244, 80-91.	3.9	12
18	An experimentally validated method for temperature prediction during cyclic operation of a Li-ion cell. International Journal of Heat and Mass Transfer, 2017, 112, 89-96.	4.8	24

LIDIYA KOMSIYSKA

#	Article	IF	CITATIONS
19	Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-Ion Battery Electrodes. ACS Applied Materials & amp; Interfaces, 2017, 9, 34865-34874.	8.0	43
20	Bulk Aging of Graphite-Polypropylene Current Collectors Induced by Electrochemical Cycling in the Positive Electrolyte of Vanadium Redox Flow Batteries. Journal of the Electrochemical Society, 2017, 164, A2566-A2572.	2.9	11
21	Effect of solid loading on the processing and behavior of PEDOT:PSS binder based composite cathodes for lithium ion batteries. Synthetic Metals, 2016, 215, 86-94.	3.9	15
22	Chemical Stability of Graphite-Polypropylene Bipolar Plates for the Vanadium Redox Flow Battery at Resting State. Journal of the Electrochemical Society, 2016, 163, A2318-A2325.	2.9	12
23	Layer-by-layer modification of Nafion membranes for increased life-time and efficiency of vanadium/air redox flow batteries. Journal of Membrane Science, 2016, 510, 259-269.	8.2	61
24	Temperature propagation in prismatic lithium-ion-cells after short term thermal stress. Journal of Power Sources, 2016, 313, 30-36.	7.8	17
25	Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery. Journal of Power Sources, 2016, 306, 692-701.	7.8	35
26	PEDOT: PSS as a Functional Binder for Cathodes in Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A674-A678.	2.9	86
27	Performance and the Characteristics of Thermally Stressed Anodes in Lithium Ion Cells. Journal of the Electrochemical Society, 2015, 162, A3110-A3115.	2.9	6
28	Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode. Journal of Power Sources, 2015, 273, 1163-1170.	7.8	35
29	Simulation Model of a Prismatic Lithium-Ion-Battery for Temperature Propagation in the Cell after a Short Term Thermal Stress. ECS Meeting Abstracts, 2015, , .	0.0	0
30	Improvement of the Performance of Graphite Felt Electrodes for Vanadium-Redox-Flow-Batteries by Plasma Treatment. International Journal of Renewable Energy Development, 2014, 3, 7-12.	2.4	29
31	Modeling a vanadium redox flow battery system for large scale applications. Energy Conversion and Management, 2013, 66, 26-32.	9.2	65
32	Utilizing a vanadium redox flow battery to avoid wind power deviation penalties in an electricity market. Energy Conversion and Management, 2013, 76, 1150-1157.	9.2	25
33	Study of the local SOC distribution in a lithium-ion battery by physical and electrochemical modeling and simulation. Applied Mathematical Modelling, 2013, 37, 2016-2027.	4.2	30
34	Detecting Aging Phenomena in Commercial Cathodes for Li-Ion Batteries Using High Resolution Computed Tomography. Advances in Science and Technology, 0, , .	0.2	2