
Shi-Xiong Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2404160/publications.pdf Version: 2024-02-01

SHI-XIONC TAN

#	Article	IF	CITATIONS
1	HOXC10 Suppresses Browning to Maintain White Adipocyte Identity. Diabetes, 2021, 70, 1654-1663.	0.6	5
2	The roles of reactive oxygen species and antioxidants in cryopreservation. Bioscience Reports, 2019, 39, .	2.4	131
3	High dietary fat and sucrose result in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. Journal of Biological Chemistry, 2018, 293, 5731-5745.	3.4	65
4	HOXC10 suppresses browning of white adipose tissues. Experimental and Molecular Medicine, 2017, 49, e292-e292.	7.7	25
5	mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Reports, 2016, 17, 29-36.	6.4	88
6	Hyperactivation of the Insulin Signaling Pathway Improves Intracellular Proteostasis by Coordinately Up-regulating the Proteostatic Machinery in Adipocytes. Journal of Biological Chemistry, 2016, 291, 25629-25640.	3.4	15
7	MicroRNA profiling of the pubertal mouse mammary gland identifies miR-184 as a candidate breast tumour suppressor gene. Breast Cancer Research, 2015, 17, 83.	5.0	44
8	Selective Insulin Resistance in Adipocytes. Journal of Biological Chemistry, 2015, 290, 11337-11348.	3.4	85
9	Direction pathway analysis of large-scale proteomics data reveals novel features of the insulin action pathway. Bioinformatics, 2014, 30, 808-814.	4.1	29
10	Novel Systems for Dynamically Assessing Insulin Action in Live Cells Reveals Heterogeneity in the Insulin Response. Traffic, 2013, 14, 259-273.	2.7	27
11	The Rab GTPase-Activating Protein TBC1D4/AS160 Contains an Atypical Phosphotyrosine-Binding Domain That Interacts with Plasma Membrane Phospholipids To Facilitate GLUT4 Trafficking in Adipocytes. Molecular and Cellular Biology, 2012, 32, 4946-4959.	2.3	58
12	Amplification and Demultiplexing in Insulin-regulated Akt Protein Kinase Pathway in Adipocytes. Journal of Biological Chemistry, 2012, 287, 6128-6138.	3.4	63
13	Next-generation Akt inhibitors provide greater specificity: effects on glucose metabolism in adipocytes. Biochemical Journal, 2011, 435, 539-544.	3.7	50
14	Cell Cycle Sensing of Oxidative Stress in Saccharomyces cerevisiae by Oxidation of a Specific Cysteine Residue in the Transcription Factor Swi6p. Journal of Biological Chemistry, 2011, 286, 5204-5214.	3.4	30
15	Akt inhibitors reduce glucose uptake independently of their effects on Akt. Biochemical Journal, 2010, 432, 191-198.	3.7	22
16	The critical role of glutathione in maintenance of the mitochondrial genome. Free Radical Biology and Medicine, 2010, 49, 1956-1968.	2.9	48
17	The Thioredoxin-Thioredoxin Reductase System Can Function in Vivo as an Alternative System to Reduce Oxidized Glutathione in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2010, 285, 6118-6126.	3.4	81
18	Cu, Zn Superoxide Dismutase and NADP(H) Homeostasis Are Required for Tolerance of Endoplasmic Reticulum Stress in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2009, 20, 1493-1508.	2.1	57

#	Article	IF	CITATIONS
19	Adaptation to hydrogen peroxide in Saccharomyces cerevisiae: The role of NADPH-generating systems and the SKN7 transcription factor. Free Radical Biology and Medicine, 2008, 44, 1131-1145.	2.9	40
20	Reactive oxygen species and yeast apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1354-1368.	4.1	331