
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2404155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzymatic Desymmetrisation of Prochiral Phosphines and Phosphine P-Sulfides as a Route to P-Chiral Catalysts. Catalysts, 2022, 12, 171.	3.5	2
2	Sulforaphane derivatives containing triazaphosphaadamantane (PTA) or <i>o</i> -carborane substituent. Phosphorus, Sulfur and Silicon and the Related Elements, 2022, 197, 554-556.	1.6	1
3	Enzymatic Approach to the Synthesis of Enantiomerically Pure Hydroxy Derivatives of 1,3,5-Triaza-7-phosphaadamantane. Journal of Organic Chemistry, 2021, 86, 8556-8562.	3.2	2
4	The first enzyme-promoted addition of nitromethane to imines (aza-Henry reaction). Bioorganic Chemistry, 2020, 94, 103377.	4.1	5
5	Preparative scale application of Mucor circinelloides ene–reductase and alcohol dehydrogenase activity for the asymmetric bioreduction of α,β-unsaturated γ-ketophosphonates. Bioorganic Chemistry, 2020, 96, 103548.	4.1	7
6	Fluoroaryl analogs of sulforaphane – A group of compounds of anticancer and antimicrobial activity. Bioorganic Chemistry, 2020, 94, 103454.	4.1	13
7	Still–Gennari Olefination and its Applications in Organic Synthesis. Advanced Synthesis and Catalysis, 2020, 362, 2552-2596.	4.3	22
8	Quarter of a Century after: A Glimpse at the Conformation and Mechanism of Candida antarctica Lipase B. Crystals, 2020, 10, 404.	2.2	7
9	The sulfinyl group: Its importance for asymmetric synthesis and biological activity. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 649-653.	1.6	7
10	Highly enantioselective asymmetric reduction of aromatic ketimines promoted by chiral enantiomerically pure sulfoxides as organocatalysts. Journal of Sulfur Chemistry, 2018, 39, 380-387.	2.0	5
11	Application of the Z-Selective Still–Gennari Olefination Protocol for the Synthesis of Z-α,β-Unsaturated Phosphonates. Synthesis, 2018, 50, 4140-4144.	2.3	6
12	Chiral Organosulfur Ligands/Catalysts with a Stereogenic Sulfur Atom: Applications in Asymmetric Synthesis. Chemical Reviews, 2017, 117, 4147-4181.	47.7	271
13	Asymmetric Bioreduction of βâ€Activated Vinylphosphonate Derivatives Using Eneâ€Reductases. Advanced Synthesis and Catalysis, 2017, 359, 4190-4196.	4.3	19
14	Front Cover Picture: Asymmetric Bioreduction of βâ€Activated Vinylphosphonate Derivatives Using Eneâ€Reductases (Adv. Synth. Catal. 23/2017). Advanced Synthesis and Catalysis, 2017, 359, 4067-4067.	4.3	0
15	Chiral Heteroatom-Containing Compounds. , 2017, , 191-250.		4
16	Crystal and molecular structure of hexagonal form of lipase B from Candida antarctica Acta Biochimica Polonica, 2016, 63, 103-109.	0.5	15
17	Chiral Hypervalent, Pentacoordinated Phosphoranes. Molecules, 2016, 21, 1573.	3.8	18
18	Organofluorine Isoselenocyanate Analogues of Sulforaphane: Synthesis and Anticancer Activity. ChemMedChem, 2016, 11, 2398-2409.	3.2	20

#	Article	IF	CITATIONS
19	Highly efficient chiral polydentate sulfinyl ligands/catalysts containing prolinol moiety. Tetrahedron, 2016, 72, 2649-2655.	1.9	5
20	The Comparison of MTT and CVS Assays for the Assessment of Anticancer Agent Interactions. PLoS ONE, 2016, 11, e0155772.	2.5	131
21	Highly Efficient Asymmetric Aziridination of Unsaturated Aldehydes Promoted by Chiral Heteroâ€organic Catalysts. ChemCatChem, 2015, 7, 3589-3592.	3.7	8
22	Enzyme-promoted kinetic resolution of acetoxymethyl aryl sulfoxides. Journal of Molecular Catalysis B: Enzymatic, 2015, 118, 23-28.	1.8	11
23	Highly Efficient Asymmetric Simmons–Smith Cyclopropanation Promoted by Chiral Heteroorganic Aziridinyl Ligands. ChemCatChem, 2014, 6, 873-875.	3.7	23
24	New enantiomeric fluorine-containing derivatives of sulforaphane: Synthesis, absolute configurations and biological activity. European Journal of Medicinal Chemistry, 2014, 76, 332-342.	5.5	22
25	Polydentate chiral heteroorganic ligands/catalysts—impact of particular functional groups on their activity in selected reactions of asymmetric synthesis. Tetrahedron: Asymmetry, 2013, 24, 1417-1420.	1.8	12
26	Efficient catalysts for asymmetric Mannich reactions. Organic and Biomolecular Chemistry, 2013, 11, 4207.	2.8	29
27	Unexpected Racemization of 2-Hydroxymethylphenylphosphine Oxides. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 249-253.	1.6	3
28	Molecular modeling of the lipase-catalyzed hydrolysis of acetoxymethyl(i-propoxy)phenylphosphine oxide and its P-borane analogue. Journal of Molecular Graphics and Modelling, 2012, 38, 290-297.	2.4	12
29	Investigations on enzyme catalytic promiscuity: The first attempts at a hydrolytic enzyme-promoted conjugate addition of nucleophiles to î±,î²-unsaturated sulfinyl acceptors. Journal of Molecular Catalysis B: Enzymatic, 2012, 81, 25-30.	1.8	13
30	Biocatalysis in Organosulfur Chemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1104-1118.	1.6	16
31	Highly enantioselective aza-Henry reaction promoted by amine-functionalized tridentate sulfinyl ligands. Tetrahedron: Asymmetry, 2011, 22, 1087-1089.	1.8	24
32	Highly enantioselective asymmetric direct aldol reaction catalyzed by amine-functionalized tridentate sulfinyl ligands. Tetrahedron: Asymmetry, 2011, 22, 1325-1327.	1.8	26
33	Lipase-mediated stereoselective transformations of chiral organophosphorus P-boranes revisited: revision of the absolute configuration of alkoxy(hydroxymethyl)phenylphosphine P-boranes. Tetrahedron: Asymmetry, 2011, 22, 1581-1590.	1.8	29
34	Enzymatic Synthesis of Enantiopure Precursors of Chiral Bidentate and Tridentate Phosphorus Catalysts. Advanced Synthesis and Catalysis, 2011, 353, 2446-2454.	4.3	15
35	Highly enantioselective addition of phenylethynylzinc to aldehydes using aziridine-functionalized tridentate sulfinyl ligands. Tetrahedron: Asymmetry, 2010, 21, 2687-2689.	1.8	28
36	Highly enantioselective conjugate addition of diethylzinc to enones using aziridine-functionalized tridentate sulfinyl ligands. Tetrahedron: Asymmetry, 2010, 21, 1890-1892.	1.8	37

#	Article	IF	CITATIONS
37	Michael addition to a chiral non-racemic 2-phosphono-2,3-didehydrothiolane S-oxide. Tetrahedron: Asymmetry, 2009, 20, 293-297.	1.8	7
38	New highly efficient aziridine-functionalized tridentate sulfinyl catalysts for enantioselective diethylzinc addition to carbonyl compounds. Tetrahedron: Asymmetry, 2009, 20, 2311-2314.	1.8	43
39	Highly enantioselective Henry reaction catalyzed by chiral tridentate heteroorganic ligands. Tetrahedron: Asymmetry, 2009, 20, 1547-1549.	1.8	34
40	Biocatalytic oxidation of thiophosphoryl compounds: a new chemo-enzymatic approach to enantiomeric insecticidal thionophosphates and their oxons. Tetrahedron: Asymmetry, 2009, 20, 1948-1951.	1.8	18
41	Nitrilase-catalysed hydrolysis of cyanomethyl p-tolyl sulfoxide: stereochemistry and mechanism. Tetrahedron: Asymmetry, 2008, 19, 562-567.	1.8	13
42	Enzyme-promoted desymmetrization of bis(2-hydroxymethylphenyl) sulfoxide as a route to tridentate chiral catalysts. Tetrahedron: Asymmetry, 2008, 19, 2096-2101.	1.8	35
43	The First Effective Procedure for the Direct Esterification and Thiolysis of Sulfinic Acids. Synthesis, 2008, 2008, 3563-3564.	2.3	17
44	Enzyme-Promoted Desymmetrisation of Prochiral Bis(cyanomethyl) Sulfoxide. Advanced Synthesis and Catalysis, 2007, 349, 1387-1392.	4.3	22
45	Enzyme-promoted desymmetrisation of prochiral bis(cyanomethyl)phenylphosphine oxide. Tetrahedron: Asymmetry, 2007, 18, 2108-2112.	1.8	18
46	Diastereoselective Michael additions to α,β-unsaturated α-sulfinyl phosphonates in the thiolane series. Tetrahedron Letters, 2007, 48, 351-355.	1.4	7
47	Lipase-mediated kinetic resolution of racemic and desymmetrization of prochiral organophosphorus P-boranes. Journal of Molecular Catalysis B: Enzymatic, 2006, 39, 45-49.	1.8	19
48	Lipase-promoted dynamic kinetic resolution of racemic Î ² -hydroxyalkyl sulfones. Tetrahedron: Asymmetry, 2005, 16, 2157-2160.	1.8	38
49	Supercritical carbon dioxide as a reaction medium for enzymatic kinetic resolution of P-chiral hydroxymethanephosphinates. Tetrahedron: Asymmetry, 2005, 16, 2015-2018.	1.8	31
50	Synthesis of chiral hydroxythiolanes as potential catalysts for asymmetric organozinc additions to carbonyl compounds. Heteroatom Chemistry, 2005, 16, 93-103.	0.7	11
51	Solution and Crystal Structures of Chiral Molecules Can Be Significantly Different:Âtert-Butylphenylphosphinoselenoic Acid. Journal of Physical Chemistry A, 2004, 108, 2072-2079.	2.5	18
52	The first enzymatic desymmetrizations of prochiral phosphine oxides. Tetrahedron: Asymmetry, 2003, 14, 3379-3384.	1.8	35
53	Molecular interactions in 3-carboxy-2-diphenylphosphinoylcyclopentanone. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2003, 59, 2875-2881.	3.9	1
54	Chemoenzymatic Synthesis of Phosphocarnitine Enantiomers. Journal of Organic Chemistry, 2002, 67, 7872-7875.	3.2	35

#	Article	IF	CITATIONS
55	Enzymatic reactions in ionic liquids: lipase-catalysed kinetic resolution of racemic, P -chiral hydroxymethanephosphinates and hydroxymethylphosphine oxides. Tetrahedron: Asymmetry, 2002, 13, 735-738.	1.8	72
56	Biocatalytic syntheses of chiral non-racemic 2-hydroxyalkanephosphonates. Tetrahedron: Asymmetry, 2001, 12, 3139-3145.	1.8	39
57	On the applicability of the Jones active site model of pig liver esterase to S-chiral and prochiral sulfinyl substrates. Tetrahedron: Asymmetry, 2000, 11, 911-915.	1.8	12
58	Kinetic Resolution of Racemic Cyclic Sulfoxides Using Hydrolytic Enzymes. European Journal of Organic Chemistry, 1999, 1999, 2573-2578.	2.4	10
59	Synthesis and Biological Activity of Enantiomeric Pairs of Phosphosulfonate Herbicides. Journal of Agricultural and Food Chemistry, 1999, 47, 318-321.	5.2	40
60	Enzyme-promoted kinetic resolution of racemic, P-chiral phosphonyl and phosphorylacetates. Tetrahedron: Asymmetry, 1998, 9, 2641-2650.	1.8	29
61	Lipase-promoted kinetic resolution of racemic, P-chiral hydroxymethylphosphonates and phosphinates. Tetrahedron: Asymmetry, 1998, 9, 3283-3287.	1.8	50
62	Total Synthesis of Racemic and Optically Active Sarkomycin. Synthesis, 1997, 1997, 356-365.	2.3	16
63	Crystal and molecular structure of cyclic sulfoxides: 2-cyano-2-ethoxycarbonyl-3,6-dihydro-4,5-dimethyl-2H-thiapyran 1-oxide and 2-phenyl-2-methoxycarbonyl-3,6-dihydro-2H-thiapyran 1-oxide. Heteroatom Chemistry, 1995, 6, 631-638.	0.7	5
64	Novel Approach to the Synthesis of Alkoxycarbonylmethyl- and Bis(alkoxycarbonylmethyl)phosphine Oxides Based on a Reformatsky-Type Reaction. Synthesis, 1995, 1995, 144-146.	2.3	9
65	A Novel Enzymatic Approach to the Synthesis of Chiral Sulfoxides: Enzymatic Hydrolysis of Prochiral Sulfinyldicarboxylates. Synlett, 1994, 1994, 127-129.	1.8	24
66	Enzymatic resolution of racemic phosphinoylacetates having a stereogenic phosphorus atom. Tetrahedron Letters, 1994, 35, 7081-7084.	1.4	26
67	Organothiophosphorus compounds as inductors of the iodine—azide reaction. Analytical application. Talanta, 1994, 41, 1493-1498.	5.5	11
68	Thiophosphoryl compounds as novel inducing agents in the iodine–azide reaction. Analyst, The, 1991, 116, 85-87.	3.5	8
69	α-Phosphoryl Cyclopentanones as Possible Intermediates in the Total Synthesis of Sarkomycin. Phosphorus, Sulfur and Silicon and the Related Elements, 1990, 49-50, 97-100.	1.6	3
70	A new synthesis of (±)-sarkomycin from a β-ketophosphonate. Tetrahedron Letters, 1989, 30, 1143-1146.	1.4	33
71	Organosulphur compounds. Tetrahedron, 1988, 44, 6687-6692.	1.9	23
72	Rearrangement of s-phosphorylisothioureas into n-phosphoryl-thioureas: stereochemistry at phosphorus and mechanism. Tetrahedron, 1986, 42, 4591-4601.	1.9	13

#	Article	IF	CITATIONS
73	A New, Efficient Synthesis of Thioloesters. Synthesis, 1986, 1986, 305-308.	2.3	8
74	A New Synthesis of α-Alkylthio-ketones (α-Sulphenylated Ketones). Synthesis, 1983, 1983, 332-334.	2.3	16
75	THE CRYSTAL STRUCTURE AND ABSOLUTE CONFIGURATION OF $(+)$ -O-METHYL-O- $(\hat{l}\pm$ -NAPHTHYL)-S-METHYL PHOSPHOROTHIOLATE. Phosphorous and Sulfur and the Related Elements, 1983, 15, 105-108.	0.2	1
76	Preparation of unsymmetrical disulfides by using sulfines. Tetrahedron, 1979, 35, 169-173.	1.9	15
77	Organosulphur compounds. Part VIII. Reaction of monothiocarboxylic acids with dicyclohexylcarbodi-imide and other reactions leading to monothio-anhydrides. Journal of the Chemical Society Perkin Transactions 1, 1976, , 564-569.	0.9	14
78	Synthesis of Sulphoxides. , 0, , 233-378.		24
79	A straightforward, purification-free procedure for the synthesis of Ando and Still-Gennari type phosphonates Synthesis, 0, , .	2.3	1
80	Attempts at the enzymatic synthesis of chiral ester derivatives of 1,3,5-triaza-7-phosphaadamantane (PTA). Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-5.	1.6	0
81	Enzymatic kinetic resolution in the synthesis of new precursors of <i>P-</i> chiral organophosphorus catalysts: phosphines and their <i>P-</i> boranes. Phosphorus, Sulfur and Silicon and the Related Elements, O, , 1-4.	1.6	Ο
82	Appendix toâ€~Synthesis of Sulphoxides'. , 0, , 255-388.		0