
Zhigang Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2404014/publications.pdf Version: 2024-02-01

ZHICANC PENC

#	Article	IF	CITATIONS
1	An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience, 2010, 3, 599-607.	12.9	635
2	Migration of early aftershocks following the 2004 Parkfield earthquake. Nature Geoscience, 2009, 2, 877-881.	12.9	385
3	Temporal Changes of Shallow Seismic Velocity Around the Karadere-Düzce Branch of the North Anatolian Fault and Strong Ground Motion. Pure and Applied Geophysics, 2006, 163, 567-600.	1.9	220
4	Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes. Nature Geoscience, 2011, 4, 384-388.	12.9	152
5	Remote triggering of tremor along the San Andreas Fault in central California. Journal of Geophysical Research, 2009, 114, .	3.3	149
6	Seismicity rate immediately before and after main shock rupture from high-frequency waveforms in Japan. Journal of Geophysical Research, 2007, 112, .	3.3	139
7	Widespread Triggering of Nonvolcanic Tremor in California. Science, 2008, 319, 173-173.	12.6	137
8	Systematic analysis of crustal anisotropy along the Karadere-Düzce branch of the North Anatolian fault. Geophysical Journal International, 2004, 159, 253-274.	2.4	126
9	Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nature Geoscience, 2017, 10, 765-770.	12.9	119
10	Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999M7.4 İzmit andM7.1 Düzce, Turkey, earthquake sequences. Geophysical Journal International, 2005, 160, 1027-1043.	2.4	99
11	Anomalous early aftershock decay rate of the 2004 Mw6.0 Parkfield, California, earthquake. Geophysical Research Letters, 2006, 33, .	4.0	91
12	Non-volcanic tremor beneath the Central Range in Taiwan triggered by the 2001 <i>M</i> _w 7.8 Kunlun earthquake. Geophysical Journal International, 2008, 175, 825-829.	2.4	83
13	Deep learning for seismic phase detection and picking in the aftershock zone of 2008 M7.9 Wenchuan Earthquake. Physics of the Earth and Planetary Interiors, 2019, 293, 106261.	1.9	83
14	Dynamic triggering of microearthquakes in three geothermal/volcanic regions of California. Journal of Geophysical Research: Solid Earth, 2014, 119, 6992-7009.	3.4	80
15	Remote triggered seismicity caused by the 2011, M9.0 Tohokuâ€Oki, Japan earthquake. Geophysical Research Letters, 2012, 39, .	4.0	79
16	Complex nonvolcanic tremor near Parkfield, California, triggered by the great 2004 Sumatra earthquake. Journal of Geophysical Research, 2009, 114, .	3.3	74
17	Remotely triggered microearthquakes and tremor in central California following the 2010 <i>M</i> _{<i>w</i>_{8.8 Chile earthquake. Geophysical Research Letters, 2010, 37, .}}	4.0	66
18	Remote triggering of non-volcanic tremor around Taiwan. Geophysical Journal International, 2012, 188, 301-324.	2.4	63

#	Article	IF	CITATIONS
19	Tremors along the Queen Charlotte Margin triggered by large teleseismic earthquakes. Geophysical Research Letters, 2013, 40, 829-834.	4.0	62
20	Seismicity rate changes in the Salton Sea Geothermal Field and the San Jacinto Fault Zone after the 2010 Mw 7.2 El Mayor-Cucapah earthquake. Geophysical Journal International, 2014, 197, 1750-1762.	2.4	62
21	Strong tremor near Parkfield, CA, excited by the 2002 Denali Fault earthquake. Geophysical Research Letters, 2008, 35, .	4.0	61
22	Systematic variations in recurrence interval and moment of repeating aftershocks. Geophysical Research Letters, 2005, 32, .	4.0	59
23	Seismicity around Parkfield correlates with static shear stress changes following the 2003 <i>M_w</i> 6.5 San Simeon earthquake. Journal of Geophysical Research: Solid Earth, 2013, 118, 3576-3591.	3.4	53
24	Highâ€frequency identification of nonâ€volcanic tremor triggered by regional earthquakes. Geophysical Research Letters, 2010, 37, .	4.0	51
25	Variations of the velocity contrast and rupture properties of M6 earthquakes along the Parkfield section of the San Andreas fault. Geophysical Journal International, 2010, 180, 765-780.	2.4	44
26	Antarctic icequakes triggered by the 2010 Maule earthquake in Chile. Nature Geoscience, 2014, 7, 677-681.	12.9	44
27	Stress―and Structureâ€Induced Anisotropy in Southern California From Two Decades of Shear Wave Splitting Measurements. Geophysical Research Letters, 2017, 44, 9607-9614.	4.0	42
28	Detailed spatiotemporal evolution of microseismicity and repeating earthquakes following the 2012 <i>M_w</i> 7.6 Nicoya earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122, 524-542.	3.4	41
29	Dynamic triggering of shallow earthquakes near Beijing, China. Geophysical Journal International, 2011, 185, 1321-1334.	2.4	36
30	Detecting Earthquakes around Salton Sea Following the 2010 Mw7.2 El Mayor-Cucapah Earthquake Using GPU Parallel Computing. Procedia Computer Science, 2012, 9, 937-946.	2.0	34
31	Detecting lowâ€frequency earthquakes within nonâ€volcanic tremor in southern Taiwan triggered by the 2005 Mw8.6 Nias earthquake. Geophysical Research Letters, 2010, 37, .	4.0	33
32	Spatialâ€ŧemporal evolutions of early aftershocks following the 2013 <i>M_w</i> 6.6 Lushan earthquake in Sichuan, China. Journal of Geophysical Research: Solid Earth, 2017, 122, 2873-2889.	3.4	31
33	Dynamic triggering of highâ€frequency bursts by strong motions during the 2004 Parkfield earthquake sequence. Geophysical Research Letters, 2008, 35, .	4.0	30
34	Remotely triggered seismicity in north China following the 2008 M w 7.9 Wenchuan earthquake. Earth, Planets and Space, 2010, 62, 893-898.	2.5	30
35	Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (MW 7.6) Nicoya Peninsula, Costa Rica earthquake. Earth and Planetary Science Letters, 2015, 431, 75-86.	4.4	30
36	Locations of Injectionâ€Induced Earthquakes in Oklahoma Controlled by Crustal Structures. Journal of Geophysical Research: Solid Earth, 2018, 123, 2332-2344.	3.4	30

#	Article	IF	CITATIONS
37	Foreshocks, <i>b</i> Value Map, and Aftershock Triggering for the 2011 <i>M</i> _w 5.7 Virginia Earthquake. Journal of Geophysical Research: Solid Earth, 2018, 123, 5082-5098.	3.4	30
38	Spatial-temporal evolution of early aftershocks following the 2010 ML 6.4 Jiashian earthquake in southern Taiwan. Geophysical Journal International, 2014, 199, 1772-1783.	2.4	29
39	Delayed triggering of microearthquakes by multiple surface waves circling the Earth. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	28
40	Delayed dynamic triggering of deep tremor along the Parkfieldâ€Cholame section of the San Andreas Fault following the 2014 <i>M</i> 6.0 South Napa earthquake. Geophysical Research Letters, 2015, 42, 7916-7922.	4.0	28
41	Spatial-temporal distribution of early aftershocks following the 2016 Ms 6.4 Menyuan, Qinghai, China Earthquake. Tectonophysics, 2019, 766, 469-479.	2.2	28
42	Tectonic Tremor beneath Cuba Triggered by the <i>M</i> _w Â8.8 Maule and <i>M</i> _w Â9.0 Tohokuâ€Oki Earthquakes. Bulletin of the Seismological Society of America, 2013, 103, 595-600.	2.3	25
43	Structure-controlled seismic anisotropy along the Karadere–Düzce branch of the North Anatolian Fault revealed by shear-wave splitting tomography. Earth and Planetary Science Letters, 2014, 391, 319-326.	4.4	25
44	Velocity contrast along the rupture zone of the 2010 Mw6.9 Yushu, China, earthquake from fault zone head waves. Earth and Planetary Science Letters, 2015, 416, 91-97.	4.4	25
45	Remotely triggered earthquakes in South-Central Tibet following the 2004 <i>M</i> w 9.1 Sumatra and 2005 <i>M</i> w 8.6 Nias earthquakes. Geophysical Journal International, 2015, 201, 543-551.	2.4	25
46	Temporal Correlation Between Seismic Moment and Injection Volume for an Induced Earthquake Sequence in Central Oklahoma. Journal of Geophysical Research: Solid Earth, 2018, 123, 3047-3064.	3.4	24
47	Velocity contrast along the Calaveras fault from analysis of fault zone head waves generated by repeating earthquakes. Geophysical Research Letters, 2008, 35, .	4.0	23
48	Increasing background seismicity and dynamic triggering behaviors with nearby mining activities around Fangshan Pluton in Beijing, China. Journal of Geophysical Research: Solid Earth, 2015, 120, 5624-5638.	3.4	22
49	Spatial variations of shear wave anisotropy near the San Jacinto Fault Zone in Southern California. Journal of Geophysical Research: Solid Earth, 2015, 120, 8334-8347.	3.4	22
50	Detecting Deep Tectonic Tremor in Taiwan with a Dense Array. Bulletin of the Seismological Society of America, 2015, 105, 1349-1358.	2.3	21
51	Increasing lengths of aftershock zones with depths of moderate-size earthquakes on the San Jacinto Fault suggests triggering of deep creep in the middle crust. Geophysical Journal International, 2016, 204, 250-261.	2.4	21
52	Evolution and Distribution of the Early Aftershocks Following the 2008 Mw 7.9 Wenchuan Earthquake in Sichuan, China. Journal of Geophysical Research: Solid Earth, 2018, 123, 7775-7790.	3.4	21
53	Shallow microearthquakes near Chongqing, China triggered by the Rayleigh waves of the 2015 M7.8 Gorkha, Nepal earthquake. Earth and Planetary Science Letters, 2017, 479, 231-240.	4.4	20
54	Detailed Investigation of the Foreshock Sequence of the 2010 M _w 7.2 El Mayorâ€Cucapah Earthquake. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019076.	3.4	20

#	Article	IF	CITATIONS
55	An Automatic Phase Picker for Local Earthquakes with Predetermined Locations: Combining a Signalâ€toâ€Noise Ratio Detector with 1D Velocity Model Inversion. Seismological Research Letters, 2016, 87, 1397-1405.	1.9	19
56	Comparisons of dynamic triggering near Beijing, China following recent large earthquakes in Sumatra. Geophysical Research Letters, 2012, 39, .	4.0	18
57	Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California. Journal of Geophysical Research: Solid Earth, 2013, 118, 1008-1014.	3.4	18
58	lsolated regions of remote triggering in South/Southeast Asia following the 2012 <i>M_w</i> 8.6 Indian Ocean earthquake. Geophysical Research Letters, 2016, 43, 10,654.	4.0	17
59	Detecting remotely triggered microseismicity around Changbaishan Volcano following nuclear explosions in North Korea and large distant earthquakes around the world. Geophysical Research Letters, 2017, 44, 4829-4838.	4.0	17
60	Temporal variation of tectonic tremor activity in southern Taiwan around the 2010 <i>M</i> _{<i>L</i>} 6.4 Jiashian earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122, 5417-5434.	3.4	17
61	Earthquakes Triggered by Fluid Diffusion and Boosted by Fault Reactivation in Weiyuan, China Due to Hydraulic Fracturing. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	17
62	Increasing seismicity in Southern Tibet following the 2015 Mw 7.8 Gorkha, Nepal earthquake. Tectonophysics, 2017, 714-715, 62-70.	2.2	13
63	Remote Triggering in the Koynaâ€Warna Reservoirâ€Induced Seismic Zone, Western India. Journal of Geophysical Research: Solid Earth, 2018, 123, 2318-2331.	3.4	13
64	Systematic Search for Repeating Earthquakes Along the Haiyuan Fault System in Northeastern Tibet. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019583.	3.4	13
65	Exploration of remote triggering: A survey of multiple fault structures in Haiti. Earth and Planetary Science Letters, 2016, 455, 14-24.	4.4	12
66	Abundant aftershock sequence of the 2015 Mw7.5 Hindu Kush intermediate-depth earthquake. Geophysical Journal International, 2018, 213, 1121-1134.	2.4	12
67	Detecting remotely triggered temporal changes around the Parkfield section of the San Andreas fault. Earthquake Science, 2010, 23, 497-509.	0.9	11
68	Statistical properties of low-frequency earthquakes triggered by large earthquakes in southern Taiwan. Earth and Planetary Science Letters, 2013, 373, 1-7.	4.4	11
69	Long-term changes of earthquake inter-event times and low-frequency earthquake recurrence in central California. Earth and Planetary Science Letters, 2013, 368, 144-150.	4.4	11
70	Remote Triggering of Microearthquakes and Tremor in New Zealand following the 2016 MwÂ7.8 KaikÅura Earthquake. Bulletin of the Seismological Society of America, 2018, 108, 1784-1793.	2.3	11
71	Dynamic triggering of microseismicity in Southwest China following the 2004 Sumatra and 2012 Indian Ocean earthquakes. Journal of Asian Earth Sciences, 2019, 176, 129-140.	2.3	11
72	Complex Source Behaviors and Spatiotemporal Evolution of Seismicity During the 2015–2016 Earthquake Sequence in Cushing, Oklahoma. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022168.	3.4	10

#	Article	IF	CITATIONS
73	Investigating the Impacts of a Wet Typhoon on Microseismicity: A Case Study of the 2009 Typhoon Morakot in Taiwan Based on a Template Matching Catalog. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	10
74	Highâ€resolution deep tectonic tremor locations beneath the San Andreas Fault near Cholame, California, using the doubleâ€pair doubleâ€difference location method. Journal of Geophysical Research: Solid Earth, 2017, 122, 3062-3075.	3.4	9
75	Earthquake triggering in southeast Africa following the 2012 Indian Ocean earthquake. Geophysical Journal International, 2018, 212, 1331-1343.	2.4	9
76	Automatic identification of fault zone head waves and direct <i>P</i> waves and its application in the Parkfield section of the San Andreas Fault, California. Geophysical Journal International, 2016, 205, 1326-1341.	2.4	8
77	The 15 February 2014 MwÂ4.1 South Carolina Earthquake Sequence: Aftershock Productivity, Hypocentral Depths, and Stress Drops. Seismological Research Letters, 2020, 91, 452-464.	1.9	6
78	Comparisons of <i>in situ</i> Â <i>V</i> p/ <i>V</i> s ratios and seismic characteristics between northern and southern California. Geophysical Journal International, 2022, 229, 2162-2174.	2.4	3
79	Isolated Triggered Tremor Spots in South America and Implications for Global Tremor Activity. Seismological Research Letters, 2019, , .	1.9	2
80	Earthquakes and Multi-hazards around the Pacific Rim, Vol. 1: Introduction. Pure and Applied Geophysics, 2017, 174, 2195-2198.	1.9	1
81	Earthquakes and Multi-Hazards Around the Pacific Rim, Vol. II: Introduction. Pure and Applied Geophysics, 2018, 175, 525-528.	1.9	1
82	Deep learning for seismic event detection of earthquake aftershocks. , 2018, , .		1
83	Possible triggering relationship of six Mw > 6 earthquakes in 2018–2019 at Philippine archipelago. Acta Oceanologica Sinica, 2021, 40, 142-158.	1.0	1
84	Longâ€Period Longâ€Duration Events Detected by the IRIS Community Wavefield Demonstration Experiment in Oklahoma: Tremor or Train Signals?. Seismological Research Letters, 0, , .	1.9	0