Tong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2403886/publications.pdf

Version: 2024-02-01

1040056 996975 26 256 9 15 citations h-index g-index papers 26 26 26 255 times ranked docs citations citing authors all docs

#	Article	IF	Citations
1	Effects of nâ€Propanol Coâ€feeding in Isobutanol Synthesis from Syngas over Kâ€CuMgCe Catalyst. ChemistrySelect, 2022, 7, .	1.5	O
2	An Efficient Thiol and Trifluoromethanesulfonyl Difunctional Sulfonated Mesoporous Polydivinylbenzene Solid Acid: Cooperative Effect of Steric Hindrance and Acidity. ChemistrySelect, 2022, 7, .	1.5	0
3	A Facile Route to Prepare PbZr Nanocomposite Catalysts for the Efficient Synthesis of Diphenyl Carbonate. Catalysis Letters, 2021, 151, 3250-3260.	2.6	3
4	The effect of physical morphology and the chemical state of Ru on the catalytic properties of Ru–carbon for cellulose hydrolytic hydrogenation. New Journal of Chemistry, 2020, 44, 15169-15176.	2.8	7
5	Effect of coprecipitation method on Mg–Al hydrotalcite properties: application in the synthesis of diethylene glycol di-(methyl carbonate). Journal of the Iranian Chemical Society, 2020, 17, 2507-2513.	2.2	7
6	Effective Conversion of Cellulose to Sorbitol Catalyzed by Mesoporous Carbon Supported Ruthenium Combined with Zirconium Phosphate. Catalysis Letters, 2020, 150, 2294-2303.	2.6	14
7	Sorbitol Cyclodehydration to Isosorbide Catalyzed by Acidic Carbon Obtained from Reaction Byâ€Product. ChemistrySelect, 2020, 5, 1751-1759.	1.5	6
8	Catalytic synthesis of glycol dicarbonate from glycol and dimethyl carbonate by transesterification. Journal of Chemical Research, 2019, 43, 211-216.	1.3	2
9	Qualitative and Quantitative Analysis of the Product and By-Products from Transesterification between Phenol and Dimethyl Carbonate. Journal of Analytical Methods in Chemistry, 2019, 2019, 1-8.	1.6	1
10	Effect of zirconia polymorph on the synthesis of diphenyl carbonate over supported lead catalysts. Molecular Catalysis, 2019, 468, 117-124.	2.0	10
11	Efficient production of isosorbide from sorbitol dehydration over mesoporous carbon-based acid catalyst. Applied Catalysis A: General, 2019, 575, 38-47.	4.3	25
12	Effect of Preparation Method on the Structure and Catalytic Performance of CuZnO Catalyst for Low Temperature Syngas Hydrogenation in Liquid Phase. Catalysis Letters, 2018, 148, 1462-1471.	2.6	9
13	Low Temperature CO Hydrogenation to Ethanol in Liquid Phase over CuZn Catalyst. Chemistry Letters, 2018, 47, 624-627.	1.3	5
14	Transesterification of dimethyl carbonate and phenol to diphenyl carbonate with the bismuth compounds. Chemical Papers, 2018, 72, 2347-2352.	2.2	12
15	The role of RGO in TiO2–RGO composites for the transesterification of dimethyl carbonate with phenol to diphenyl carbonate. Research on Chemical Intermediates, 2018, 44, 799-812.	2.7	10
16	Catalytic Synthesis of Alkyl-α,ω-diyl Dimethyl Dicarbonate via Transesterification by Solid Base. Chemistry Letters, 2018, 47, 1135-1138.	1.3	4
17	Mesoporous Al-promoted sulfated zirconia as an efficient heterogeneous catalyst to synthesize isosorbide from sorbitol. Applied Catalysis A: General, 2018, 562, 258-266.	4.3	29
18	Investigation of Active Center of Cuâ€Based Catalyst for Low Temperature Methanol Synthesis from Syngas in Liquid Phase: The Contribution of Cu ⁺ and Cu ⁰ . ChemistrySelect, 2017, 2, 8000-8007.	1.5	9

TONG CHEN

#	Article	IF	CITATIONS
19	High selectivity to diphenyl carbonate synthesized via transesterification between dimethyl carbonate and phenol with C60-doped TiO2. Chemical Research in Chinese Universities, 2017, 33, 804-810.	2.6	10
20	Zn-promoted synthesis of diphenyl carbonate via transesterification over Ti–Zn double oxide catalyst. Research on Chemical Intermediates, 2017, 43, 2725-2735.	2.7	8
21	Mesoporous silica-anchored organotin as heterogeneous catalyst for the transesterification of dimethyl carbonate with phenol. Research on Chemical Intermediates, 2016, 42, 7213-7222.	2.7	18
22	Preparation and catalytic property of modified multi-walled carbon nanotube-supported TiO2 for the transesterification of dimethyl carbonate with phenol. Chinese Journal of Catalysis, 2014, 35, 481-489.	14.0	25
23	Core-shell TiO2@SiO2 catalyst for transesterification of dimethyl carbonate and phenol to diphenyl carbonate. Chinese Journal of Catalysis, 2014, 35, 457-461.	14.0	34
24	Solvent-free thermal decomposition of methylenediphenyl di(phenylcarbamate) catalyzed by nano-Cu2O. Chinese Journal of Catalysis, 2013, 34, 548-558.	14.0	6
25	Transesterification of dimethyl carbonate with phenol over a bimetallic molybdenum and copper catalyst. Reaction Kinetics and Catalysis Letters, 2008, 94, 121-129.	0.6	1
26	Effects of Ethanol Co-feeding in Higher Alcohols Synthesis from Syngas over K-MoS2 Catalyst. Catalysis Letters, 0 , 1 .	2.6	1