## **Gary Struhl**

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2403367/publications.pdf Version: 2024-02-01



Ωλον Οτριιμι

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Evolutionary plasticity in the requirement for force exerted by ligand endocytosis to activate<br>C.Âelegans Notch proteins. Current Biology, 2022, 32, 2263-2271.e6.                      | 1.8  | 4         |
| 2  | A unified mechanism for the control of Drosophila wing growth by the morphogens Decapentaplegic and Wingless. PLoS Biology, 2021, 19, e3001111.                                            | 2.6  | 15        |
| 3  | Control of <i>Drosophila</i> wing size by morphogen range and hormonal gating. Proceedings of the<br>National Academy of Sciences of the United States of America, 2020, 117, 31935-31944. | 3.3  | 32        |
| 4  | Causal role for inheritance of H3K27me3 in maintaining the OFF state of a <i>Drosophila</i> HOX gene.<br>Science, 2017, 356, .                                                             | 6.0  | 182       |
| 5  | Epsin-Dependent Ligand Endocytosis Activates Notch by Force. Cell, 2017, 171, 1383-1396.e12.                                                                                               | 13.5 | 103       |
| 6  | Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer<br>Yorkie. PLoS Biology, 2015, 13, e1002274.                                                 | 2.6  | 47        |
| 7  | Fat/Dachsous Signaling Promotes Drosophila Wing Growth by Regulating the Conformational State of the NDR Kinase Warts. Developmental Cell, 2015, 35, 737-749.                              | 3.1  | 50        |
| 8  | Notch Is Required in Adult Drosophila Sensory Neurons for Morphological and Functional Plasticity of the Olfactory Circuit. PLoS Genetics, 2015, 11, e1005244.                             | 1.5  | 28        |
| 9  | Tethered wings. Nature, 2014, 505, 162-163.                                                                                                                                                | 13.7 | 12        |
| 10 | Dissecting the molecular bridges that mediate the function of Frizzled in planar cell polarity.<br>Development (Cambridge), 2012, 139, 3665-3674.                                          | 1.2  | 62        |
| 11 | A Feed-Forward Circuit Linking Wingless, Fat-Dachsous Signaling, and the Warts-Hippo Pathway to<br>Drosophila Wing Growth. PLoS Biology, 2010, 8, e1000386.                                | 2.6  | 130       |
| 12 | Do the protocadherins Fat and Dachsous link up to determine both planar cell polarity and the dimensions of organs?. Nature Cell Biology, 2008, 10, 1379-1382.                             | 4.6  | 70        |
| 13 | Planar Cell Polarity: A Bridge Too Far?. Current Biology, 2008, 18, R959-R961.                                                                                                             | 1.8  | 17        |
| 14 | Control of <i>Drosophila</i> wing growth by the <i>vestigial</i> quadrant enhancer. Development<br>(Cambridge), 2007, 134, 3011-3020.                                                      | 1.2  | 70        |
| 15 | Recruitment of cells into the <i>Drosophila</i> wing primordium by a feed-forward circuit of <i>vestigial</i> autoregulation. Development (Cambridge), 2007, 134, 3001-3010.               | 1.2  | 95        |
| 16 | Planar cell polarity: one or two pathways?. Nature Reviews Genetics, 2007, 8, 555-563.                                                                                                     | 7.7  | 204       |
| 17 | Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled,act independently to confer<br>planar cell polarity. Development (Cambridge), 2006, 133, 4561-4572.                 | 1.2  | 195       |
| 18 | Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in<br>Drosophila. Development (Cambridge), 2005, 132, 2883-2894.                             | 1.2  | 158       |

GARY STRUHL

| #  | Article                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch.<br>Development (Cambridge), 2004, 131, 5367-5380.   | 1.2  | 220       |
| 20 | Cell interactions and planar polarity in the abdominal epidermis ofDrosophila. Development<br>(Cambridge), 2004, 131, 4651-4664.                        | 1.2  | 150       |
| 21 | Developmental Compartments and Planar Polarity in Drosophila. Current Biology, 2002, 12, 1189-1198.                                                     | 1.8  | 136       |
| 22 | Subdivision of the <i>Drosophila</i> wing imaginal disc by EGFR-mediated signaling. Development (Cambridge), 2002, 129, 1357-1368.                      | 1.2  | 85        |
| 23 | Control of growth and patterning of the <i>Drosophila</i> wing imaginal disc by EGFR-mediated signaling. Development (Cambridge), 2002, 129, 1369-1376. | 1.2  | 69        |
| 24 | Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development (Cambridge), 2002, 129, 1357-68.                               | 1.2  | 37        |
| 25 | Control of growth and patterning of the Drosophila wing imaginal disc by EGFR-mediated signaling.<br>Development (Cambridge), 2002, 129, 1369-76.       | 1.2  | 30        |
| 26 | Nicastrin is required for Presenilin-mediated transmembrane cleavage in Drosophila. Nature Cell<br>Biology, 2001, 3, 1129-1132.                         | 4.6  | 152       |
| 27 | Requirements for Presenilin-Dependent Cleavage of Notch and Other Transmembrane Proteins.<br>Molecular Cell, 2000, 6, 625-636.                          | 4.5  | 393       |
| 28 | Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb.<br>Nature, 1998, 391, 493-496.                      | 13.7 | 1,610     |
| 29 | Nuclear Access and Action of Notch In Vivo. Cell, 1998, 93, 649-660.                                                                                    | 13.5 | 713       |
| 30 | Sequence-specific RNA binding by Bicoid. Nature, 1997, 388, 634-634.                                                                                    | 13.7 | 53        |
| 31 | Direct and Long-Range Action of a DPP Morphogen Gradient. Cell, 1996, 85, 357-368.                                                                      | 13.5 | 888       |
| 32 | Morphogens, Compartments, and Pattern: Lessons from Drosophila?. Cell, 1996, 85, 951-961.                                                               | 13.5 | 547       |
| 33 | Dual Roles for Patched in Sequestering and Transducing Hedgehog. Cell, 1996, 87, 553-563.                                                               | 13.5 | 832       |
| 34 | Direct and Long-Range Action of a Wingless Morphogen Gradient. Cell, 1996, 87, 833-844.                                                                 | 13.5 | 700       |
| 35 | RNA recognition and translational regulation by a homeodomain protein. Nature, 1996, 379, 694-699.                                                      | 13.7 | 332       |
| 36 | Protein kinase A and hedgehog signaling in drosophila limb development. Cell, 1995, 80, 563-572.                                                        | 13.5 | 324       |

GARY STRUHL

| #  | Article                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Compartment boundaries and the control of Drosopfiffa limb pattern by hedgehog protein. Nature, 1994, 368, 208-214.                               | 13.7 | 843       |
| 38 | The torso receptor localizes as well as transduces the spatial signal specifying terminal body pattern in Drosophila. Nature, 1993, 362, 152-155. | 13.7 | 95        |
| 39 | Organizing activity of wingless protein in Drosophila. Cell, 1993, 72, 527-540.                                                                   | 13.5 | 837       |
| 40 | Differing strategies for organizing anterior and posterior body pattern in Drosophila embryos.<br>Nature, 1989, 338, 741-744.                     | 13.7 | 211       |
| 41 | Morphogen Gradients and the Control of Body Pattern in Insect Embryos. Novartis Foundation<br>Symposium, 1989, 144, 65-98.                        | 1.2  | 5         |
| 42 | Cis- acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos.<br>Nature, 1988, 336, 595-598.                  | 13.7 | 345       |
| 43 | Borders of parasegments in Drosophila embryos are delimited by the fushi tarazu and even-skipped genes. Nature, 1987, 328, 440-442.               | 13.7 | 240       |
| 44 | Splitting the bithorax complex of Drosophila. Nature, 1984, 308, 454-457.                                                                         | 13.7 | 133       |
| 45 | Early role of the esc+ gene product in the determination of segments in Drosophila. Cell, 1982, 31, 285-292.                                      | 13.5 | 118       |
| 46 | Decapentaplegic — hopes held out. Nature, 1982, 298, 13-14.                                                                                       | 13.7 | 4         |
| 47 | A homoeotic mutation transforming leg to antenna in Drosophila. Nature, 1981, 292, 635-638.                                                       | 13.7 | 260       |
| 48 | A gene product required for correct initiation of segmental determination in Drosophila. Nature, 1981, 293, 36-41.                                | 13.7 | 378       |