Jorge Pérez-FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2403338/publications.pdf

Version: 2024-02-01

27 papers

1,153 citations

430874 18 h-index 25 g-index

28 all docs

28 docs citations

28 times ranked

1425 citing authors

#	Article	IF	CITATIONS
1	Structural Probing with MNase Tethered to Ribosome Assembly Factors Resolves Flexible RNA Regions within the Nascent Pre-Ribosomal RNA. Non-coding RNA, 2022, 8, 1 .	2.6	3
2	A High-Copy Suppressor Screen Reveals a Broad Role of Prefoldin-like Bud27 in the TOR Signaling Pathway in Saccharomyces cerevisiae. Genes, 2022, 13, 748.	2.4	3
3	Non-Coding, RNAPII-Dependent Transcription at the Promoters of rRNA Genes Regulates Their Chromatin State in S. cerevisiae. Non-coding RNA, 2021, 7, 41.	2.6	5
4	Pol5 is required for recycling of small subunit biogenesis factors and for formation of the peptide exit tunnel of the large ribosomal subunit. Nucleic Acids Research, 2019, 48, 405-420.	14.5	7
5	Pwp2 mediates UTP-B assembly via two structurally independent domains. Scientific Reports, 2017, 7, 3169.	3.3	9
6	Purification of RNA Polymerase I-Associated Chromatin from Yeast Cells. Methods in Molecular Biology, 2016, 1455, 213-223.	0.9	0
7	Structure of the Yeast Ribosomal Stalk. , 2014, , 115-125.		10
8	Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae. Nucleic Acids Research, 2014, 42, e2-e2.	14.5	25
9	Binding of the Termination Factor Nsi1 to Its Cognate DNA Site Is Sufficient To Terminate RNA Polymerase I Transcription <i>In Vitro</i> and To Induce Termination <i>In Vivo</i> Molecular and Cellular Biology, 2014, 34, 3817-3827.	2.3	30
10	Purification of Specific Chromatin Domains from Single-Copy Gene Loci in Saccharomyces cerevisiae. Methods in Molecular Biology, 2014, 1094, 329-341.	0.9	20
11	In Vitro Reconstitution of Yeast tUTP/UTP A and UTP B Subcomplexes Provides New Insights into Their Modular Architecture. PLoS ONE, 2014, 9, e114898.	2.5	18
12	The Hog1 Stress-activated Protein Kinase Targets Nucleoporins to Control mRNA Export upon Stress. Journal of Biological Chemistry, 2013, 288, 17384-17398.	3.4	35
13	RNA polymerase I termination: Where is the end?. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 306-317.	1.9	37
14	Chromatin states at ribosomal DNA loci. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 405-417.	1.9	60
15	Structure-function analysis of Hmo1 unveils an ancestral organization of HMG-Box factors involved in ribosomal DNA transcription from yeast to human. Nucleic Acids Research, 2013, 41, 10135-10149.	14.5	47
16	Mutations in TFIIH causing trichothiodystrophy are responsible for defects in ribosomal RNA production and processing. Human Molecular Genetics, 2013, 22, 2881-2893.	2.9	283
17	Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic Acids Research, 2013, 41, 1191-1210.	14.5	61
18	Studies on the Assembly Characteristics of Large Subunit Ribosomal Proteins in S. cerevisae. PLoS ONE, 2013, 8, e68412.	2.5	51

#	Article	IF	CITATIONS
19	Regulation of Ribosomal RNA Production by RNA Polymerase I: Does Elongation Come First?. Genetics Research International, 2012, 2012, 1-13.	2.0	27
20	The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast. EMBO Journal, 2012, 31, 3480-3493.	7.8	48
21	Interrelationships between Yeast Ribosomal Protein Assembly Events and Transient Ribosome Biogenesis Factors Interactions in Early Pre-Ribosomes. PLoS ONE, 2012, 7, e32552.	2.5	34
22	Local Tertiary Structure Probing of Ribonucleoprotein Particles by Nuclease Fusion Proteins. PLoS ONE, 2012, 7, e42449.	2.5	7
23	RNA polymerase l–specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. Journal of Cell Biology, 2011, 192, 277-293.	5.2	68
24	Elucidation of the assembly events required for the recruitment of Utp20, Imp4 and Bms1 onto nascent pre-ribosomes. Nucleic Acids Research, 2011, 39, 8105-8121.	14.5	46
25	The 90S Preribosome Is a Multimodular Structure That Is Assembled through a Hierarchical Mechanism. Molecular and Cellular Biology, 2007, 27, 5414-5429.	2.3	155
26	The Acidic Protein Binding Site Is Partially Hidden in the Free Saccharomyces cerevisiae Ribosomal Stalk Protein PO. Biochemistry, 2005, 44, 5532-5540.	2.5	24
27	Characterization of interaction sites in the Saccharomyces cerevisiae ribosomal stalk components. Molecular Microbiology, 2002, 46, 719-792.	2.5	39