List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2403121/publications.pdf Version: 2024-02-01

CIUL-CAO LIUL

#	Article	IF	CITATIONS
1	Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials. Nano Research, 2023, 16, 4289-4309.	5.8	17
2	Rational construction of heterogeneous interfaces for bimetallic MOFs-derived/rGO composites towards optimizing the electromagnetic wave absorption. Chemical Engineering Journal, 2022, 429, 132238.	6.6	27
3	Designed 3D heterostructure with 0D/1D/2D hierarchy for low-frequency microwave absorption in the S-band. Journal of Materials Chemistry C, 2022, 10, 1470-1478.	2.7	39
4	Tailoring the Mechanical Performance of Carbon Nanotubes Buckypaper by Aramid Nanofibers towards Robust and Compact Supercapacitor Electrode. Advanced Functional Materials, 2022, 32, .	7.8	32
5	Preparation of Amorphous SnO ₂ â€Encapsulated Multiphased Crystalline Cu Heterostructures for Highly Efficient CO ₂ Reduction. Advanced Materials, 2022, 34, e2201114.	11.1	29
6	Visible Light Photoanode Material for Photoelectrochemical Water Splitting: A Review of Bismuth Vanadate. Energy & Fuels, 2022, 36, 11404-11427.	2.5	28
7	A freestanding 3D heterophase tungsten disulfide-based aerogel as an ultrathin microwave absorber in the Ku-band. Journal of Materials Chemistry A, 2022, 10, 13848-13857.	5.2	14
8	Selective Epitaxial Growth of Rh Nanorods on 2H/ <i>fcc</i> Heterophase Au Nanosheets to Form 1D/2D Rh–Au Heterostructures for Highly Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 4387-4396.	6.6	56
9	Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Science Advances, 2021, 7, .	4.7	64
10	Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Metals, 2021, 40, 3375-3405.	3.6	112
11	Effective Magnetic MOFs Adsorbent for the Removal of Bisphenol A, Tetracycline, Congo Red and Methylene Blue Pollutions. Nanomaterials, 2021, 11, 1917.	1.9	31
12	Hydrogen-Intercalation-Induced Lattice Expansion of Pd@Pt Core–Shell Nanoparticles for Highly Efficient Electrocatalytic Alcohol Oxidation. Journal of the American Chemical Society, 2021, 143, 11262-11270.	6.6	121
13	Amido-Functionalized Magnetic Metalâ^'Organic Frameworks Adsorbent for the Removal of Bisphenol A and Tetracycline. Frontiers in Chemistry, 2021, 9, 707559.	1.8	5
14	Phase-Selective Epitaxial Growth of Heterophase Nanostructures on Unconventional 2H-Pd Nanoparticles. Journal of the American Chemical Society, 2020, 142, 18971-18980.	6.6	111
15	A universal method for rapid and largeâ€scale growth of layered crystals. SmartMat, 2020, 1, e1011.	6.4	33
16	Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Research, 2020, 13, 1970-1975.	5.8	32
17	Ethylene Selectivity in Electrocatalytic CO ₂ Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study. Journal of the American Chemical Society, 2020, 142, 12760-12766.	6.6	183
18	Ag@MoS ₂ Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS ₂ . Journal of the American Chemical Society, 2020, 142, 7161-7167.	6.6	185

#	Article	IF	CITATIONS
19	Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. Chemical Communications, 2020, 56, 5131-5134.	2.2	28
20	Ligandâ€Exchangeâ€Induced Amorphization of Pd Nanomaterials for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e1902964.	11.1	164
21	Synthesis of Palladiumâ€Based Crystalline@Amorphous Core–Shell Nanoplates for Highly Efficient Ethanol Oxidation. Advanced Materials, 2020, 32, e2000482.	11.1	98
22	Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy, 2019, 66, 104173.	8.2	116
23	Threeâ€Dimensional Hierarchical Porous Carbon/Graphitic Carbon Nitride Composites for Efficient Photocatalytic Hydrogen Production. ChemCatChem, 2019, 11, 6364-6371.	1.8	22
24	Recent Progress in Grapheneâ€Based Nobleâ€Metal Nanocomposites for Electrocatalytic Applications. Advanced Materials, 2019, 31, e1800696.	11.1	219
25	Study on the enhancement of photocatalytic environment purification through ubiquitous-red-clay loading. SN Applied Sciences, 2019, 1, 1.	1.5	4
26	Interfacing Photosynthetic Membrane Protein with Mesoporous WO ₃ Photoelectrode for Solar Water Oxidation. Small, 2018, 14, e1800104.	5.2	14
27	Singleâ€Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis. Advanced Energy Materials, 2018, 8, 1701343.	10.2	705
28	Controlled Synthesis and Photocatalytic Performance of Au@ZnO Nanospheres with Core–Shell and Yolk-Shell Structures Assisted by Carbonaceous Layers as Intermediate. Journal of Nanoscience and Nanotechnology, 2018, 18, 2555-2561.	0.9	2
29	Crystal Phase and Architecture Engineering of Lotusâ€Thalamusâ€Shaped Ptâ€Ni Anisotropic Superstructures for Highly Efficient Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1801741.	11.1	163
30	Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Applied Catalysis B: Environmental, 2017, 200, 141-149.	10.8	198
31	Efficient photocatalytic CO 2 reduction in all-inorganic aqueous environment: Cooperation between reaction medium and Cd(II) modified colloidal ZnS. Nano Energy, 2017, 34, 524-532.	8.2	74
32	Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation. Nano Energy, 2017, 36, 331-340.	8.2	168
33	Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. Angewandte Chemie, 2017, 129, 5662-5666.	1.6	17
34	Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation. Angewandte Chemie - International Edition, 2017, 56, 5570-5574.	7.2	104
35	Rücktitelbild: Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation (Angew. Chem. 20/2017). Angewandte Chemie, 2017, 129, 5724-5724.	1.6	0
36	Superior Photocatalytic H ₂ Production with Cocatalytic Co/Ni Species Anchored on Sulfide Semiconductor. Advanced Materials, 2017, 29, 1703258.	11.1	188

#	Article	IF	CITATIONS
37	Hematite homojunctions without foreign element doping for efficient and stable overall water splitting. RSC Advances, 2016, 6, 62263-62269.	1.7	14
38	Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 2016, 138, 9128-9136.	6.6	341
39	Targeted Synthesis of 2H―and 1Tâ€Phase MoS ₂ Monolayers for Catalytic Hydrogen Evolution. Advanced Materials, 2016, 28, 10033-10041.	11.1	534
40	Improved Photocatalytic H ₂ Evolution over G arbon Nitride with Enhanced Inâ€Plane Ordering. Small, 2016, 12, 6160-6166.	5.2	48
41	Efficient Visibleâ€Lightâ€Driven Carbon Dioxide Reduction by a Singleâ€Atom Implanted Metal–Organic Framework. Angewandte Chemie - International Edition, 2016, 55, 14310-14314.	7.2	612
42	In Situ Bond Modulation of Graphitic Carbon Nitride to Construct p–n Homojunctions for Enhanced Photocatalytic Hydrogen Production. Advanced Functional Materials, 2016, 26, 6822-6829.	7.8	583
43	n-type boron phosphide as a highly stable, metal-free, visible-light-active photocatalyst for hydrogen evolution. Nano Energy, 2016, 28, 158-163.	8.2	94
44	Highly active nonprecious metal hydrogen evolution electrocatalyst: ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. NPG Asia Materials, 2016, 8, e293-e293.	3.8	100
45	Efficient Visibleâ€Lightâ€Driven Carbon Dioxide Reduction by a Singleâ€Atom Implanted Metal–Organic Framework. Angewandte Chemie, 2016, 128, 14522-14526.	1.6	174
46	Surfaceâ€Plasmonâ€Enhanced Photodriven CO ₂ Reduction Catalyzed by Metal–Organicâ€Frameworkâ€Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers. Advanced Materials, 2016, 28, 3703-3710.	11.1	300
47	Room-temperature driven and visible light enhanced dehydrogenation reactions catalysed by basic Au/SrTiO ₃ . Journal of Materials Chemistry A, 2016, 4, 1941-1946.	5.2	17
48	Active Sites Implanted Carbon Cages in Core–Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction. ACS Nano, 2016, 10, 684-694.	7.3	426
49	A Co ₃ O ₄ -embedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for CO ₂ photoreduction. Nanoscale, 2016, 8, 6712-6720.	2.8	96
50	Engineering coordination polymers for photocatalysis. Nano Energy, 2016, 22, 149-168.	8.2	223
51	Natureâ€Inspired Environmental "Phosphorylation―Boosts Photocatalytic H ₂ Production over Carbon Nitride Nanosheets under Visible‣ight Irradiation. Angewandte Chemie - International Edition, 2015, 54, 13561-13565.	7.2	287
52	Synthesis and photocatalytic properties of metastable β-Bi ₂ O ₃ stabilized by surface-coordination effects. Journal of Materials Chemistry A, 2015, 3, 5119-5125.	5.2	149
53	Exceptional enhancement of H2 production in alkaline environment over plasmonic Au/TiO2 photocatalyst under visible light. APL Materials, 2015, 3, .	2.2	16
54	In situ synthesis of ordered mesoporous Co-doped TiO ₂ and its enhanced photocatalytic activity and selectivity for the reduction of CO ₂ . Journal of Materials Chemistry A, 2015, 3, 9491-9501.	5.2	155

#	Article	IF	CITATIONS
55	A highly durable p-LaFeO ₃ /n-Fe ₂ O ₃ photocell for effective water splitting under visible light. Chemical Communications, 2015, 51, 3630-3633.	2.2	83
56	Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chemical Society Reviews, 2015, 44, 7808-7828.	18.7	406
57	Crystal-facet-dependent hot-electron transfer in plasmonic-Au/semiconductor heterostructures for efficient solar photocatalysis. Journal of Materials Chemistry C, 2015, 3, 7538-7542.	2.7	55
58	Band-structure-controlled BiO(ClBr) _{(1â^'x)/2} I _x solid solutions for visible-light photocatalysis. Journal of Materials Chemistry A, 2015, 3, 8123-8132.	5.2	114
59	In situ construction of α-Bi ₂ O ₃ /g-C ₃ N ₄ /β-Bi ₂ O ₃ compos and their highly efficient photocatalytic performances. RSC Advances, 2015, 5, 92963-92969.	sit es 7	45
60	Au@Cu ₇ S ₄ yolk–shell nanoparticles as a 980 nm laser-driven photothermal agent with a heat conversion efficiency of 63%. RSC Advances, 2015, 5, 87903-87907.	1.7	34
61	Efficient organic degradation under visible light by α-Bi2O3 with a CuO -assistant electron transfer process. Applied Catalysis B: Environmental, 2015, 163, 267-276.	10.8	47
62	Nanorod-like α-Bi ₂ O ₃ : a highly active photocatalyst synthesized using g-C ₃ N ₄ as a template. RSC Advances, 2014, 4, 55062-55066.	1.7	22
63	Yolk–shell structured Fe3O4@C@F-TiO2 microspheres with surface fluorinated as recyclable visible-light driven photocatalysts. Applied Catalysis B: Environmental, 2014, 150-151, 515-522.	10.8	48
64	Photoreduction of CO 2 over the well-crystallized ordered mesoporous TiO 2 with the confined space effect. Nano Energy, 2014, 9, 50-60.	8.2	137
65	Fabrication of Ge quantum dots doped TiO2 films with high optical absorption properties via layer-by-layer ion-beam sputtering. Materials Letters, 2012, 67, 369-372.	1.3	15
66	Three-dimensional cuprous oxide microtube lattices with high catalytic activity templated by bacterial cellulose nanofibers. Journal of Materials Chemistry, 2011, 21, 10637.	6.7	44