
Yingqi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2403100/publications.pdf Version: 2024-02-01

VINCOLL

#	Article	IF	CITATIONS
1	Carbon dots for specific "off-on―sensing of Co2+ and EDTA for in vivo bioimaging. Materials Science and Engineering C, 2021, 123, 112022.	7.3	22
2	Acid-Triggered Self-Assembled Egg White Protein-Coated Gold Nanoclusters for Selective Fluorescent Detection of Fe ³⁺ , NO ₂ [–] , and Cysteine. ACS Applied Nano Materials, 2020, 3, 11838-11849.	5.0	20
3	Stable nitrogen and sulfur co-doped carbon dots for selective folate sensing, in vivo imaging and drug delivery. Diamond and Related Materials, 2020, 105, 107791.	3.9	23
4	A tumor-targeted, intracellular activatable and theranostic nanodiamond drug platform for strongly enhanced <i>in vivo</i> antitumor therapy. Journal of Materials Chemistry B, 2020, 8, 1660-1671.	5.8	21
5	OFF–ON nanodiamond drug platform for targeted cancer imaging and therapy. Journal of Materials Chemistry B, 2019, 7, 3390-3402.	5.8	25
6	A copper-mediated on–off–on gold nanocluster for endogenous GSH sensing to drive cancer cell recognition. Journal of Materials Chemistry B, 2019, 7, 2169-2176.	5.8	39
7	Novel bimetallic goldâ^'silver nanoclusters with "Synergy―enhanced fluorescence for cyanide sensing, cell imaging and temperature sensing. Talanta, 2017, 170, 530-539.	5.5	41
8	Enhanced anticancer activity of an intracellularly activatable nanomedicine based on GLYlated nanodiamond. Diamond and Related Materials, 2017, 77, 171-180.	3.9	14
9	Multi-talented applications for cell imaging, tumor cells recognition, patterning, staining and temperature sensing by using egg white-encapsulated gold nanoclusters. Sensors and Actuators B: Chemical, 2017, 240, 114-124.	7.8	38
10	pH-sensitive nanomedicine based on PEGylated nanodiamond for enhanced tumor therapy. RSC Advances, 2016, 6, 36407-36417.	3.6	13
11	Acetate ions enhance load and stability of doxorubicin onto PEGylated nanodiamond for selective tumor intracellular controlled release and therapy. Integrative Biology (United Kingdom), 2016, 8, 956-967.	1.3	20
12	Smart pH-responsive and high doxorubicin loading nanodiamond for in vivo selective targeting, imaging, and enhancement of anticancer therapy. Journal of Materials Chemistry B, 2016, 4, 5046-5058.	5.8	24
13	Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery. Diamond and Related Materials, 2015, 58, 84-93.	3.9	41
14	Folate-conjugated nanodiamond for tumor-targeted drug delivery. RSC Advances, 2015, 5, 82711-82716.	3.6	40
15	Transferrin-conjugated nanodiamond as an intracellular transporter of chemotherapeutic drug and targeting therapy for cancer cells. Therapeutic Delivery, 2014, 5, 511-524.	2.2	33
16	In vivo enhancement of anticancer therapy using bare or chemotherapeutic drug-bearing nanodiamond particles. International Journal of Nanomedicine, 2014, 9, 1065.	6.7	54
17	PEGylated nanodiamond for chemotherapeutic drug delivery. Diamond and Related Materials, 2013, 36, 26-34.	3.9	100
18	Interaction between Fluorescent Nanodiamond and Human Transferrin and Intracellular Imaging. Acta Chimica Sinica, 2013, 71, 782.	1.4	7

Yingqi Li

#	Article	IF	CITATIONS
19	BmK CT-conjugated fluorescence nanodiamond as potential glioma-targeted imaging and drug. Diamond and Related Materials, 2012, 21, 73-76.	3.9	27
20	Nanodiamond mediated delivery of chemotherapeutic drugs. Journal of Materials Chemistry, 2011, 21, 16406.	6.7	61
21	Common Pathway for K562 Cells Endocytosis and Release of Ga _C â€Tf and Ga ₂ â€Tf via a Transferrin Receptor. Chinese Journal of Chemistry, 2010, 28, 766-770.	4.9	1
22	Spectroscopic analysis of the interaction between gallium(III) and apoovotransferrin. Journal of Photochemistry and Photobiology B: Biology, 2008, 91, 137-142.	3.8	7