
Dusica Maysinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2402821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into the Impact of Gold Nanoclusters Au ₁₀ SG ₁₀ on Human Microglia. ACS Chemical Neuroscience, 2022, 13, 464-476.	3.5	7
2	Open questions on proteins interacting with nanoclusters. Communications Chemistry, 2022, 5, .	4.5	10
3	Wechselwirkung von Polyelektrolytâ€Architekturen mit Proteinen und Biosystemen. Angewandte Chemie, 2021, 133, 3926-3950.	2.0	8
4	Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angewandte Chemie - International Edition, 2021, 60, 3882-3904.	13.8	65
5	Miktoarm Star Polymers with Environment‣elective ROS/GSH Responsive Locations: From Modular Synthesis to Tuned Drug Release through Micellar Partial Corona Shedding and/or Core Disassembly. Macromolecular Bioscience, 2021, 21, e2000305.	4.1	20
6	Size and ligand effects of gold nanoclusters in alteration of organellar state and translocation of transcription factors in human primary astrocytes. Nanoscale, 2021, 13, 3173-3183.	5.6	11
7	Insights into Interactions between Interleukin-6 and Dendritic Polyglycerols. International Journal of Molecular Sciences, 2021, 22, 2415.	4.1	6
8	New Approaches in Nanomedicine for Ischemic Stroke. Pharmaceutics, 2021, 13, 757.	4.5	19
9	Mass spectrometry imaging in zebrafish larvae for assessing drug safety and metabolism. Analytical and Bioanalytical Chemistry, 2021, 413, 5135-5146.	3.7	16
10	Human astrocytes and astrocytoma respond differently to resveratrol. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102441.	3.3	2
11	Gold nanoclusters elicit homeostatic perturbations in glioblastoma cells and adaptive changes of lysosomes. Theranostics, 2020, 10, 1633-1648.	10.0	21
12	Ratiometric pH Sensing in Living Cells Using Carbon Dots. Particle and Particle Systems Characterization, 2020, 37, 1900430.	2.3	14
13	Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. Journal of Controlled Release, 2020, 317, 216-231.	9.9	79
14	Dendrimers as Modulators of Brain Cells. Molecules, 2020, 25, 4489.	3.8	9
15	Nanotherapeutic Modulation of Human Neural Cells and Glioblastoma in Organoids and Monocultures. Cells, 2020, 9, 2434.	4.1	10
16	Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery. Journal of Materials Chemistry B, 2020, 8, 7275-7287.	5.8	18
17	Telodendrimer-Based Macromolecular Drug Design using 1,3-Dipolar Cycloaddition for Applications in Biology. Molecules, 2020, 25, 857.	3.8	9
18	How could gold nanourchins be applied in the clinic?. Nanomedicine, 2020, 15, 829-832.	3.3	6

#	Article	IF	CITATIONS
19	Optical Sensing: Ratiometric pH Sensing in Living Cells Using Carbon Dots (Part. Part. Syst. Charact.) Tj ETQq1 1 (0.784314 2.3	rgBT /Over
20	PEG-conjugated pyrrole-based polymers: one-pot multicomponent synthesis and self-assembly into soft nanoparticles for drug delivery. Chemical Communications, 2019, 55, 9829-9832.	4.1	32
21	Dendritic polyglycerols are modulators of microglia-astrocyte crosstalk. Future Neurology, 2019, 14, FNL31.	0.5	11
22	Unraveling Aqueous Self-Assembly of Telodendrimers to Shed Light on Their Efficacy in Drug Encapsulation. ACS Applied Bio Materials, 2019, 2, 4515-4526.	4.6	8
23	Gold nanourchins induce cellular stress, impair proteostasis and damage RNA. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 22, 102083.	3.3	14
24	Organotypic and primary neural cultures as models to assess effects of different gold nanostructures on glia and neurons. Nanotoxicology, 2019, 13, 285-304.	3.0	13
25	Type 2 diabetes is associated with suppression of autophagy and lipid accumulation in βâ€cells. Journal of Cellular and Molecular Medicine, 2019, 23, 2890-2900.	3.6	65
26	The susceptibility to chronic social defeat stress is related to low hippocampal extrasynaptic NMDA receptor function. Neuropsychopharmacology, 2019, 44, 1310-1318.	5.4	27
27	Nanostructured Modulators of Neuroglia. Current Pharmaceutical Design, 2019, 25, 3905-3916.	1.9	3
28	Gold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. Nanoscale, 2018, 10, 1716-1726.	5.6	19
29	Dendritic Polyglycerol Sulfates in the Prevention of Synaptic Loss and Mechanism of Action on Glia. ACS Chemical Neuroscience, 2018, 9, 260-271.	3.5	28
30	Inhibition of glioblastoma cell proliferation, invasion, and mechanism of action of a novel hydroxamic acid hybrid molecule. Cell Death Discovery, 2018, 4, 41.	4.7	30
31	Encapsulation and Delivery of Neutrophic Proteins and Hydrophobic Agents Using PMOXA–PDMS–PMOXA Triblock Polymersomes. ACS Omega, 2018, 3, 13882-13893.	3.5	32
32	SAHAquines, Novel Hybrids Based on SAHA and Primaquine Motifs, as Potential Cytostatic and Antiplasmodial Agents. ChemistryOpen, 2018, 7, 624-638.	1.9	13
33	Telodendrimers for Physical Encapsulation and Covalent Linking of Individual or Combined Therapeutics. Molecular Pharmaceutics, 2017, 14, 2607-2615.	4.6	20
34	Nanoengineered silica: Properties, applications and toxicity. Food and Chemical Toxicology, 2017, 109, 753-770.	3.6	135
35	Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter. International Journal of Molecular Sciences, 2017, 18, 243.	4.1	122
36	Gold Nanoparticles Impinge on Nucleoli and the Stress Response in MCF7 Breast Cancer Cells. Nanobiomedicine, 2016, 3, 3.	5.7	43

#	Article	IF	CITATIONS
37	Nutritional and Nanotechnological Modulators of Microglia. Frontiers in Immunology, 2016, 7, 270.	4.8	7
38	Remodeling of lipid bodies by docosahexaenoic acid in activated microglial cells. Journal of Neuroinflammation, 2016, 13, 116.	7.2	42
39	Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes. Nanomedicine, 2016, 11, 447-463.	3.3	41
40	Inhibition of carbonic anhydrase IX in glioblastoma multiforme. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 109, 81-92.	4.3	31
41	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
42	Pharmacological inhibition of lipid droplet formation enhances the effectiveness of curcumin in glioblastoma. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 100, 66-76.	4.3	44
43	Low generation polyamine dendrimers bearing flexible tetraethylene glycol as nanocarriers for plasmids and siRNA. Nanoscale, 2016, 8, 5106-5119.	5.6	24
44	Asymmetric AB ₃ Miktoarm Star Polymers: Synthesis, Selfâ€Assembly, and Study of Micelle Stability Using AF ₄ for Efficient Drug Delivery. Macromolecular Bioscience, 2015, 15, 1744-1754.	4.1	22
45	Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells. Frontiers in Neuroscience, 2015, 9, 480.	2.8	30
46	Off to the Organelles - Killing Cancer Cells with Targeted Gold Nanoparticles. Theranostics, 2015, 5, 357-370.	10.0	148
47	Quantum dot agglomerates in biological media and their characterization by asymmetrical flow field-flow fractionation. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 290-299.	4.3	24
48	Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange. Nature Methods, 2015, 12, 195-198.	19.0	124
49	A fast track strategy toward highly functionalized dendrimers with different structural layers: an "onion peel approach― Polymer Chemistry, 2015, 6, 1436-1444.	3.9	35
50	Dendritic Polyglycerol Sulfate Inhibits Microglial Activation and Reduces Hippocampal CA1 Dendritic Spine Morphology Deficits. Biomacromolecules, 2015, 16, 3073-3082.	5.4	38
51	Docosahexaenoic acid (DHA): a modulator of microglia activity and dendritic spine morphology. Journal of Neuroinflammation, 2015, 12, 34.	7.2	87
52	Nanoparticle-based caspase sensors. Nanomedicine, 2015, 10, 483-501.	3.3	11
53	Assessment of the developmental toxicity of nanoparticles in an <i>ex vivo</i> 3D model, the murine limb bud culture system. Nanotoxicology, 2015, 9, 780-791.	3.0	2
54	Miktoarm Star Polymer Based Multifunctional Traceable Nanocarriers for Efficient Delivery of Poorly Water Soluble Pharmacological Agents. Macromolecular Bioscience, 2014, 14, 1312-1324.	4.1	22

#	Article	IF	CITATIONS
55	"Click―Reactions: An Emerging Tool for Biology. Frontiers in Nanobiomedical Research, 2014, , 509-531.	0.1	Ο
56	Design and synthesis of multifunctional traceable dendrimers for visualizing drug delivery. RSC Advances, 2014, 4, 19242-19245.	3.6	18
57	Combined A ³ Coupling and Click Chemistry Approach for the Synthesis of Dendrimer-Based Biological Tools. ACS Macro Letters, 2014, 3, 1079-1083.	4.8	21
58	Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cellular and Molecular Life Sciences, 2014, 71, 4259-4273.	5.4	58
59	"Click―Dendrimers as Anti-inflammatory Agents: With Insights into Their Binding from Molecular Modeling Studies. Molecular Pharmaceutics, 2013, 10, 2502-2508.	4.6	35
60	Caspase-1 Activity in Microglia Stimulated by Pro-Inflammagen Nanocrystals. ACS Nano, 2013, 7, 9585-9598.	14.6	30
61	Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends in Pharmacological Sciences, 2013, 34, 497-507.	8.7	146
62	Hsp70 silencing with siRNA in nanocarriers enhances cancer cell death induced by the inhibitor of Hsp90. European Journal of Pharmaceutical Sciences, 2013, 50, 149-158.	4.0	46
63	Quantum Dot Cytotoxicity and Ways To Reduce It. Accounts of Chemical Research, 2013, 46, 672-680.	15.6	286
64	Alkyne-Azide "Click―Chemistry in Designing Nanocarriers for Applications in Biology. Molecules, 2013, 18, 9531-9549.	3.8	52
65	Intranasal Fluorescent Nanocrystals for Longitudinal In Vivo Evaluation of Cerebral Microlesions. Pharmaceutical Nanotechnology, 2013, 1, 93-104.	1.5	14
66	Modulation of inflammatory signaling and cytokine release from microglia by celastrol incorporated into dendrimer nanocarriers. Nanomedicine, 2012, 7, 1149-1165.	3.3	49
67	New Ruthenium(II)–Letrozole Complexes as Anticancer Therapeutics. Journal of Medicinal Chemistry, 2012, 55, 8799-8806.	6.4	103
68	Design and Evaluation of Multifunctional Nanocarriers for Selective Delivery of Coenzyme Q10 to Mitochondria. Biomacromolecules, 2012, 13, 239-252.	5.4	104
69	Mechanisms of cellular adaptation to quantum dots – the role of glutathione and transcription factor EB. Nanotoxicology, 2012, 6, 249-262.	3.0	45
70	Woundâ€Healing with Mechanically Robust and Biodegradable Hydrogel Fibers Loaded with Silver Nanoparticles. Advanced Healthcare Materials, 2012, 1, 621-630.	7.6	74
71	Thermosensitive dendrimer formulation for drug delivery at physiologically relevant temperatures. Chemical Communications, 2011, 47, 12146.	4.1	29
72	Facile Construction of Multifunctional Nanocarriers Using Sequential Click Chemistry for Applications in Biology. Macromolecules, 2011, 44, 521-529.	4.8	28

#	Article	IF	CITATIONS
73	Short Ligands Affect Modes of QD Uptake and Elimination in Human Cells. ACS Nano, 2011, 5, 4909-4918.	14.6	85
74	Gold nanoparticles and quantum dots for bioimaging. Microscopy Research and Technique, 2011, 74, 592-604.	2.2	116
75	Multivalent niacin nanoconjugates for delivery to cytoplasmic lipid droplets. Biomaterials, 2011, 32, 1419-1429.	11.4	34
76	Multiâ€ŧasking with Single Platform Dendrimers for Targeting Subâ€Cellular Microenvironments. Chemistry - A European Journal, 2010, 16, 6164-6168.	3.3	13
77	Minocycline Block Copolymer Micelles and their Antiâ€Inflammatory Effects on Microglia. Macromolecular Bioscience, 2010, 10, 278-288.	4.1	24
78	Tailoring the efficacy of nimodipine drug delivery using nanocarriers based on A2B miktoarm star polymers. Biomaterials, 2010, 31, 8382-8392.	11.4	91
79	Microglial Response to Gold Nanoparticles. ACS Nano, 2010, 4, 2595-2606.	14.6	263
80	Lipopolysaccharide-QD Micelles Induce Marked Induction of TLR2 and Lipid Droplet Accumulation in Olfactory Bulb Microglia. Molecular Pharmaceutics, 2010, 7, 1183-1194.	4.6	33
81	Proinflammatory Cytokines Activate the Intrinsic Apoptotic Pathway in β-Cells. Diabetes, 2009, 58, 1807-1815.	0.6	195
82	Nanoparticles can induce changes in the intracellular metabolism of lipids without compromising cellular viability. FEBS Journal, 2009, 276, 6204-6217.	4.7	60
83	Block-copolymer micelles as carriers of cell signaling modulators for the inhibition of JNK in human islets of Langerhans. Biomaterials, 2009, 30, 3597-3604.	11.4	16
84	The binding of pullulan modified cholesteryl nanogels to AÎ ² oligomers and their suppression of cytotoxicity. Biomaterials, 2009, 30, 5583-5591.	11.4	88
85	Lipid Droplets: Their Role in Nanoparticle-Induced Oxidative Stress. Molecular Pharmaceutics, 2009, 6, 1125-1137.	4.6	42
86	Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. Journal of Molecular Medicine, 2008, 86, 291-302.	3.9	190
87	Cytotoxicity of aged cadmium-telluride quantum dots to rainbow trout hepatocytes. Nanotoxicology, 2008, 2, 113-120.	3.0	50
88	Ceramide Is Responsible for the Failure of Compensatory Nerve Sprouting in Apolipoprotein E Knock-Out Mice. Journal of Neuroscience, 2008, 28, 7891-7899.	3.6	15
89	Fate of micelles and quantum dots in cells. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 270-281.	4.3	148
90	Real-Time Imaging of Astrocyte Response to Quantum Dots:  In Vivo Screening Model System for Biocompatibility of Nanoparticles. Nano Letters, 2007, 7, 2513-2520.	9.1	122

#	Article	IF	CITATIONS
91	Nanoparticles and cells: good companions and doomed partnerships. Organic and Biomolecular Chemistry, 2007, 5, 2335.	2.8	102
92	Gold-Labeled Block Copolymer Micelles Reveal Gold Aggregates at Multiple Subcellular Sites. Langmuir, 2007, 23, 4830-4836.	3.5	15
93	Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. Journal of Nanobiotechnology, 2007, 5, 1.	9.1	261
94	Impairments of heat shock protein expression and MAPK translocation in the central nervous system of follitropin receptor knockout mice. Experimental Gerontology, 2007, 42, 619-628.	2.8	19
95	Quantum Dots and Other Fluorescent Nanoparticles: Quo Vadis in the Cell?. Advances in Experimental Medicine and Biology, 2007, 620, 156-167.	1.6	22
96	Long-Term Exposure to CdTe Quantum Dots Causes Functional Impairments in Live Cells. Langmuir, 2007, 23, 1974-1980.	3.5	562
97	Interaction of Functionalized Superparamagnetic Iron Oxide Nanoparticles with Brain Structures. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 108-116.	2.5	168
98	Assessment of the Integrity of Poly(caprolactone)-b-poly(ethylene oxide) Micelles under Biological Conditions:  A Fluorogenic-Based Approach. Langmuir, 2006, 22, 3570-3578.	3.5	187
99	Block copolymer micelles as delivery vehicles of hydrophobic drugs: Micelle–cell interactions. Journal of Drug Targeting, 2006, 14, 343-355.	4.4	199
100	Neurite outgrowth in dorsal root ganglia induced by islet neogenesis-associated protein peptide involves protein kinase A activation. NeuroReport, 2006, 17, 189-193.	1.2	4
101	Dual-action peptides: a new strategy in the treatment of diabetes-associated neuropathy. Drug Discovery Today, 2006, 11, 254-260.	6.4	9
102	Unmodified Cadmium Telluride Quantum Dots Induce Reactive Oxygen Species Formation Leading to Multiple Organelle Damage and Cell Death. Chemistry and Biology, 2005, 12, 1227-1234.	6.0	656
103	Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release, 2005, 109, 169-188.	9.9	1,303
104	Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of Molecular Medicine, 2005, 83, 377-385.	3.9	741
105	Polycaprolactone-block-poly(ethylene oxide) Micelles:  A Nanodelivery System for 17β-Estradiol. Molecular Pharmaceutics, 2005, 2, 519-527.	4.6	46
106	INGAP peptide improves nerve function and enhances regeneration in streptozotocinâ€induced diabetic C57BL/6 mice. FASEB Journal, 2004, 18, 1767-1769.	0.5	39
107	Inhibition of caspase-mediated PARP-1 cleavage results in increased necrosis in isolated islets of Langerhans. Journal of Molecular Medicine, 2004, 82, 389-397.	3.9	37
108	Influence of Metalation on the Morphologies of Poly(ethylene oxide)-block-poly(4-vinylpyridine) Block Copolymer Micelles. Langmuir, 2004, 20, 3543-3550.	3.5	138

#	Article	IF	CITATIONS
109	BpV (phen) induces apoptosis of RINm5F cells by modulation of MAPKs and MKP-1. Biochemical and Biophysical Research Communications, 2003, 300, 877-883.	2.1	11
110	Neotrofin, a novel purine that induces NGF-dependent nociceptive nerve sprouting but not hyperalgesia in adult rat skin. Molecular and Cellular Neurosciences, 2003, 24, 568-580.	2.2	8
111	Micellar Nanocontainers Distribute to Defined Cytoplasmic Organelles. Science, 2003, 300, 615-618.	12.6	1,070
112	The menopausal mouse: a new neural paradigm of a distressing human condition. NeuroReport, 2003, 14, 1617-1622.	1.2	11
113	Incorporation and Release of Hydrophobic Probes in Biocompatible Polycaprolactone-block-poly(ethylene oxide) Micelles:  Implications for Drug Delivery. Langmuir, 2002, 18, 9996-10004.	3.5	222
114	Islet-Neogenesis-Associated Protein Enhances Neurite Outgrowth from DRG Neurons. Biochemical and Biophysical Research Communications, 2002, 291, 649-654.	2.1	15
115	Cellular Internalization of Poly(ethylene oxide)-b-poly(ε-caprolactone) Diblock Copolymer Micelles. Bioconjugate Chemistry, 2002, 13, 1259-1265.	3.6	198
116	Differential regulation of JNK activation and MKP-1 expression by peroxovanadium complexes. Neurochemistry International, 2001, 38, 341-347.	3.8	10
117	MKP-1 as a target for pharmacological manipulations in PC12 cell survival. Neurochemistry International, 2001, 39, 25-32.	3.8	13
118	Modulation of JNK and p38 Stress Activated Protein Kinases In Isolated Islets of Langerhans. Annals of Surgery, 2001, 233, 124-133.	4.2	46
119	Cell Loss in Isolated Human Islets Occurs by Apoptosis. Pancreas, 2000, 20, 270-276.	1.1	211
120	INSULIN-LIKE GROWTH FACTORS PROMOTE ISLET CELL SURVIVAL IN VITRO THROUGH MAP KINASE MEDIATED SIGNALING Transplantation, 2000, 69, S377.	1.0	2
121	Phosphatidylinositol 3-Kinase Signaling to Akt Mediates Survival in Isolated Canine Islets of Langerhans. Biochemical and Biophysical Research Communications, 2000, 277, 455-461.	2.1	48
122	Molecular mechanisms involved in the antiproliferative action of protein tyrosine phosphatase inhibitor potassium bisperoxo(1,10-phenanthroline)oxovanadate. Life Sciences, 2000, 68, 165-175.	4.3	8
123	Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 1999, 16, 3-27.	5.0	1,230
124	Phosphorylation of mitogen-activated protein kinase is altered in neuroectodermal cells overexpressing the human amyloid precursor protein 751 isoform. Molecular Brain Research, 1999, 72, 115-120.	2.3	19
125	Activation and expression of ERK, JNK, and p38 MAP-kinases in isolated islets of Langerhans: implications for cultured islet survival. FEBS Letters, 1999, 455, 203-208.	2.8	79
126	Transforming growth factor-β mediates the neurotrophic effect of fibroblast growth factor-2 on midbrain dopaminergic neurons. European Journal of Neuroscience, 1998, 10, 2746-2750.	2.6	52

#	Article	IF	CITATIONS
127	From Vanadis to Atropos: vanadium compounds as pharmacological tools in cell death signalling. Trends in Pharmacological Sciences, 1998, 19, 452-460.	8.7	108
128	Polycaprolactone-b-poly(ethylene Oxide) Block Copolymer Micelles as a Novel Drug Delivery Vehicle for Neurotrophic Agents FK506 and L-685,818. Bioconjugate Chemistry, 1998, 9, 564-572.	3.6	264
129	Chemiluminometric determination of choline-related substances in pharmaceutical preparations by dot-blot. Journal of Pharmaceutical and Biomedical Analysis, 1994, 12, 1083-1090.	2.8	7
130	Neocortical infarction in subhuman primates leads to restricted morphological damage of the cholinergic neurons in the nucleus basalis of Meynert. Brain Research, 1994, 648, 1-8.	2.2	22
131	Chapter 26 Cooperative effects of gangliosides on trophic factor-induced neuronal cell recovery and synaptogenesis: studies in rodents and subhuman primates. Progress in Brain Research, 1994, 101, 337-355.	1.4	13
132	In vitro effects of brain derived neurotrophic factor released from microspheres. NeuroReport, 1994, 5, 2577-2582.	1.2	54
133	Effects of coencapsulated NGF and GM1 in rats with cortical lesions. NeuroReport, 1993, 4, 971-974.	1.2	24
134	Recovery of nucleus basalis cholinergic neurons by grafting NGF secretor fibroblasts. NeuroReport, 1992, 3, 353-356.	1.2	17
135	Microencapsulated nerve growth factor: Effects on the forebrain neurons following devascularizing cortical lesions. Neuroscience Letters, 1992, 140, 71-74.	2.1	47
136	Grafting of genetically modified cells: Effects of acetylcholine release in vivo. Neurochemistry International, 1992, 21, 543-548.	3.8	12
137	Effects of nerve growth factor on cortical and striatal acetylcholine and dopamine release in rats with cortical devascularizing lesions. Brain Research, 1992, 577, 300-305.	2.2	31
138	Three-dimensional reconstruction and quantitative evaluation of devascularizing cortical lesions in the rat. Journal of Neuroscience Methods, 1990, 35, 147-156.	2.5	15
139	Preparation and in vivo effect of microencapsulated cholinotoxin. International Journal of Pharmaceutics, 1990, 63, 149-153.	5.2	3
140	Microencapsulated monosialoganglioside GM1: Physical properties andin vivoeffects. Journal of Microencapsulation, 1989, 6, 35-42.	2.8	19
141	Effects of microencapsulated monosialoganglioside GM1 on cholinergic neurons. Brain Research, 1989, 496, 165-172.	2.2	18
142	Cholinergic and GABAergic neurotoxicity of some alkylating agents. Biochemical Pharmacology, 1986, 35, 3583-3586.	4.4	10
143	Hemicholinium mustard derivatives: Preliminary assesment of cholinergic neurotoxicity. Neurochemical Research, 1986, 11, 1091-1102.	3.3	13
144	Preparation and high-performance liquid chromatography of iodinated diethylstilbestrols and some related steroids. Journal of Chromatography A, 1977, 130, 129-138.	3.7	9