Timothy J Stalker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2402780/publications.pdf Version: 2024-02-01

TIMOTHY | STALKED

#	Article	IF	CITATIONS
1	Involvement of AMP-Activated Protein Kinase in Glucose Uptake Stimulated by the Globular Domain of Adiponectin in Primary Rat Adipocytes. Diabetes, 2003, 52, 1355-1363.	0.6	416
2	Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood, 2013, 121, 1875-1885.	1.4	345
3	Inhibition of Rho-Kinase Leads to Rapid Activation of Phosphatidylinositol 3-Kinase/Protein Kinase Akt and Cardiovascular Protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1842-1847.	2.4	312
4	A new HMG-CoA reductase inhibitor, rosuvastatin, exerts anti-inflammatory effects on the microvascular endothelium: the role of mevalonic acid. British Journal of Pharmacology, 2001, 133, 406-412.	5.4	180
5	Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1621-1626.	7.1	178
6	A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood, 2014, 124, 1808-1815.	1.4	151
7	A systems approach to hemostasis: 3. Thrombus consolidation regulates intrathrombus solute transport and local thrombin activity. Blood, 2014, 124, 1824-1831.	1.4	140
8	Eph kinases and ephrins support thrombus growth and stability by regulating integrin outside-in signaling in platelets. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9820-9825.	7.1	139
9	Minding the gaps to promote thrombus growth and stability. Journal of Clinical Investigation, 2005, 115, 3385-3392.	8.2	123
10	Platelet Signaling. Handbook of Experimental Pharmacology, 2012, , 59-85.	1.8	122
11	Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interventional Cardiology Clinics, 2017, 6, 1-12.	0.4	119
12	A systems approach to hemostasis: 2. Computational analysis of molecular transport in the thrombus microenvironment. Blood, 2014, 124, 1816-1823.	1.4	102
13	Mechanisms of Amelioration of Glucose-Induced Endothelial Dysfunction Following Inhibition of Protein Kinase C In Vivo. Diabetes, 2002, 51, 1556-1564.	0.6	93
14	Elevated ambient glucose induces acute inflammatory events in the microvasculature: effects of insulin. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E848-E856.	3.5	90
15	Plateletâ€ŧargeting sensor reveals thrombin gradients within blood clots forming in microfluidic assays and in mouse. Journal of Thrombosis and Haemostasis, 2012, 10, 2344-2353.	3.8	83
16	A novel role for calpains in the endothelial dysfunction of hyperglycemia. FASEB Journal, 2003, 17, 1-19.	0.5	78
17	The Calcium-Dependent Protease Calpain Causes Endothelial Dysfunction in Type 2 Diabetes. Diabetes, 2005, 54, 1132-1140.	0.6	77
18	JAM-A protects from thrombosis by suppressing integrin αllbβ3-dependent outside-in signaling in platelets. Blood, 2012, 119, 3352-3360.	1.4	70

#	Article	IF	CITATIONS
19	Endothelial cell specific adhesion molecule (ESAM) localizes to platelet–platelet contacts and regulates thrombus formation in vivo. Journal of Thrombosis and Haemostasis, 2009, 7, 1886-1896.	3.8	61
20	Occlusive thrombi arise in mammals but not birds in response to arterial injury: evolutionary insight into human cardiovascular disease. Blood, 2011, 118, 3661-3669.	1.4	59
21	Disruption of SEMA4D Ameliorates Platelet Hypersensitivity in Dyslipidemia and Confers Protection Against the Development of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1039-1045.	2.4	58
22	A newly identified complex of spinophilin and the tyrosine phosphatase, SHP-1, modulates platelet activation by regulating G protein–dependent signaling. Blood, 2012, 119, 1935-1945.	1.4	57
23	Shaping the platelet response to vascular injury. Current Opinion in Hematology, 2014, 21, 410-417.	2.5	56
24	Interrelationships between structure and function during the hemostatic response to injury. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2243-2252.	7.1	54
25	RGS/Gi2α interactions modulate platelet accumulation and thrombus formation at sites of vascular injury. Blood, 2010, 116, 6092-6100.	1.4	52
26	Simulation of Intrathrombus Fluid and Solute Transport Using In Vivo Clot Structures with Single Platelet Resolution. Annals of Biomedical Engineering, 2013, 41, 1297-1307.	2.5	51
27	Loss of PIP5Klβ demonstrates that PIP5KI isoform-specific PIP ₂ synthesis is required for IP ₃ formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14064-14069.	7.1	47
28	A systems approach to hemostasis: 4. How hemostatic thrombi limit the loss of plasma-borne molecules from the microvasculature. Blood, 2016, 127, 1598-1605.	1.4	46
29	Defective release of \hat{I}_{\pm} granule and lysosome contents from platelets in mouse Hermansky-Pudlak syndrome models. Blood, 2015, 125, 1623-1632.	1.4	43
30	Novel Therapeutic Targets at the Platelet Vascular Interface. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, s43-50.	2.4	42
31	Spatiotemporal regulation of coagulation and platelet activation during the hemostatic response inÂvivo. Journal of Thrombosis and Haemostasis, 2015, 13, 1949-1959.	3.8	42
32	Loss of PIKfyve in platelets causes a lysosomal disease leading to inflammation and thrombosis in mice. Nature Communications, 2014, 5, 4691.	12.8	39
33	Diminished contact-dependent reinforcement of Syk activation underlies impaired thrombus growth in mice lacking Semaphorin 4D. Blood, 2010, 116, 5707-5715.	1.4	36
34	Microcirculation as a Target for the Anti-inflammatory Properties of Statins. Microcirculation, 2002, 9, 431-442.	1.8	32
35	Platelets and hemostasis: a new perspective on an old subject. Blood Advances, 2016, 1, 5-9.	5.2	31
36	Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. Journal of Clinical Investigation, 2017, 128, 125-140.	8.2	30

#	Article	IF	CITATIONS
37	Coordination of platelet agonist signaling during the hemostatic response in vivo. Blood Advances, 2017, 1, 2767-2775.	5.2	28
38	Harnessing the Platelet Signaling Network to Produce an Optimal Hemostatic Response. Hematology/Oncology Clinics of North America, 2013, 27, 381-409.	2.2	26
39	Hematopoietic lineage cell–specific protein 1 (HS1) is a functionally important signaling molecule in platelet activation. Blood, 2007, 110, 2449-2456.	1.4	25
40	Phosphatidylinositol transfer protein-α in platelets is inconsequential for thrombosis yet is utilized for tumor metastasis. Nature Communications, 2017, 8, 1216.	12.8	22
41	Contact-dependent signaling events that promote thrombus formation. Blood Cells, Molecules, and Diseases, 2006, 36, 157-161.	1.4	21
42	Signal Transduction During Platelet Plug Formation. , 2007, , 319-346.		21
43	Signal Transduction During Platelet Plug Formation. , 2013, , 367-398.		20
44	Platelets lacking PIP5KlÎ ³ have normal integrin activation but impaired cytoskeletal-membrane integrity and adhesion. Blood, 2013, 121, 2743-2752.	1.4	20
45	Inhibition of Rho-kinase attenuates endothelial–leukocyte interaction during ischemia–reperfusion injury. Vascular Medicine, 2012, 17, 379-385.	1.5	19
46	Mouse laser injury models: variations on a theme. Platelets, 2020, 31, 423-431.	2.3	16
47	A Human Vascular Injuryâ€onâ€a hip Model of Hemostasis. Small, 2021, 17, e2004889.	10.0	15
48	Peptides derived from MARCKS block coagulation complex assembly on phosphatidylserine. Scientific Reports, 2017, 7, 4275.	3.3	14
49	Use of electron microscopy to study platelets and thrombi. Platelets, 2020, 31, 580-588.	2.3	14
50	GRK6 regulates the hemostatic response to injury through its rate-limiting effects on GPCR signaling in platelets. Blood Advances, 2020, 4, 76-86.	5.2	14
51	RGS10 shapes the hemostatic response to injury through its differential effects on intracellular signaling by platelet agonists. Blood Advances, 2018, 2, 2145-2155.	5.2	13
52	Minding the Gaps—and the Junctions, Too. Circulation, 2012, 125, 2414-2416.	1.6	12
53	Loss of PIP5KlÎ ² Causes a Defect in Lamellipodia Formation and Shear Resistant Adhesion Blood, 2006, 108, 141-141.	1.4	12
54	Boundary Events: Contact-Dependent and Contact-Facilitated Signaling between Platelets. Seminars in Thrombosis and Hemostasis, 2004, 30, 399-410.	2.7	9

#	Article	IF	CITATIONS
55	Thrombin spatial distribution determines protein CÂactivation during hemostasis and thrombosis. Blood, 2022, 139, 1892-1902.	1.4	9
56	Mechanisms of platelet activation. , 2001, , 37-52.		7
57	Junctional Adhesion Molecule a Helps Maintain Integrin αIIbβ3 in Resting State. Blood, 2008, 112, 111-111.	1.4	7
58	Hemostatic Thrombus Formation in Flowing Blood. , 2019, , 371-391.		5
59	Platelets Lacking PIP5KIÎ ³ Have Impaired Cytoskeletal Dynamics and Adhesion, but No Defect in Integrin Activation Blood, 2009, 114, 772-772.	1.4	4
60	Platelet Activation Gradients During Thrombus Formation. Blood, 2015, 126, SCI-13-SCI-13.	1.4	4
61	The contribution of TFPIÎ \pm to the hemostatic response to injury in mice. Journal of Thrombosis and Haemostasis, 2021, 19, 2182-2192.	3.8	3
62	Platelet Activation State Intermixing in a Venous Puncture Model Indicates Novel Patterns of Thrombus Formation. Blood, 2019, 134, 9-9.	1.4	3
63	A Systems Approach to the Platelet Signaling Network and the Hemostatic Response to Injury. , 2017, , 367-378.		2
64	Mouse models of platelet function in vivo. Platelets, 2020, 31, 415-416.	2.3	2
65	Discovery of a New Signaling Complex Based on Spinophilin That Regulates Platelet Activation In Vitro and In Vivo. Blood, 2010, 116, 161-161.	1.4	2
66	Deletion of the Semaphorin, Sema4D, but Not Inhibition of Sema4D Shedding by ADAM17, Impairs Platelet Function and Reduces Infarct Size After Myocardial Ischemia Blood, 2009, 114, 771-771.	1.4	2
67	Microcirculation as a Target for the Anti-inflammatory Properties of Statins. Microcirculation, 2002, 9, 431-442.	1.8	1
68	Loss of Sema4D Signaling in Platelets Impairs the Formation and Stability of Arterial Thrombi In Vivo and Reduces Myocardial Infarct Size Blood, 2007, 110, 3631-3631.	1.4	1
69	Development of a Stable Thrombotic Core with Limited Access to Plasma Proteins During Thrombus Formation In Vivo. Blood, 2010, 116, 2013-2013.	1.4	1
70	Thromboxane A2 Signaling Regulates Heterogeneous Platelet Activation Following Laser-Induced Injury In Mouse Cremaster Arterioles. Blood, 2013, 122, 1055-1055.	1.4	1
71	Pikfyve Deletion In Platelets Causes Aberrant Platelet Lysosomal Storage Associated With Inappropriate Inflammatory Response. Blood, 2013, 122, 24-24.	1.4	1
72	Platelet Pitp-Alpha Promotes Thrombin Generation and the Dissemination of Tumor Metastasis, but Has Minimal Effect on Vascular Plug Formation. Blood, 2015, 126, 418-418.	1.4	1

#	Article	IF	CITATIONS
73	A NOVEL ROLE FOR THE INDUCIBLE ISOFORM OF NITRIC OXIDE SYNTHASE (INOS) ON THE ANTI-INFLAMMATORY EFFECT OF STATINS Shock, 2001, 15, 94-95.	2.1	Ο
74	Loss of Individual PIP5KI Isoforms Demonstrate That Spatial PIP2 Synthesis Is Required for Platelet Second Messenger Formation & Integrity of the Actin Cytoskeleton. Blood, 2008, 112, 109-109.	1.4	0
75	Platelet Junctional Adhesion Molecule-A Regulates Thrombosis by Negatively Regulating Outside-in Signaling through Integrin αIIbβ3 Blood, 2009, 114, 155-155.	1.4	0
76	Loss of PIKFyve Kinase Function Driven by Platelet Factor 4 Promoter Results in Platelet Lysosomal Storage Defects and Infiltration of Multiple Organs with Vacuolated Macrophages. Blood, 2011, 118, 697-697.	1.4	0
77	Pikfyve-Deficient Platelets Mediate Inflammation and Thrombosis by Releasing Aberrant Granules. Blood, 2012, 120, 262-262.	1.4	0
78	Pleckstrin-2 Plays an Essential Role in the Pathogenesis of JAK2V617F-Induced Myeloproliferative Neoplasms. Blood, 2016, 128, 798-798.	1.4	0
79	GRK2 Regulates ADP Signaling in Platelets Via P2Y 1 and P2Y 12. Blood, 2021, 138, 578-578.	1.4	0
80	Bleeding Cessation in a Mouse Jugular Vein Puncture Wound Model Is Caused By Extravascular Capping, Not Hole Infill. Blood, 2020, 136, 13-14.	1.4	0