List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2402335/publications.pdf Version: 2024-02-01

FINA SALMOSZ

#	Article	IF	CITATIONS
1	Visualization of interaction between inorganic nanoparticles and bacteria or fungi. International Journal of Nanomedicine, 2010, 5, 1085.	6.7	226
2	Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. BMC Veterinary Research, 2018, 14, 1.	1.9	180
3	Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent. Nanoscale Research Letters, 2018, 13, 116.	5.7	129
4	In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells. International Journal of Nanomedicine, 2013, 8, 413.	6.7	104
5	Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Archives of Animal Nutrition, 2007, 61, 444-451.	1.8	87
6	In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma. International Journal of Nanomedicine, 2015, 10, 1585.	6.7	87
7	Nanoparticles of Copper Stimulate Angiogenesis at Systemic and Molecular Level. International Journal of Molecular Sciences, 2015, 16, 4838-4849.	4.1	87
8	Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Archives of Animal Nutrition, 2012, 66, 416-429.	1.8	85
9	Biodistribution of a High Dose of Diamond, Graphite, and Graphene Oxide Nanoparticles After Multiple Intraperitoneal Injections in Rats. Nanoscale Research Letters, 2015, 10, 398.	5.7	81
10	Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. Nanoscale Research Letters, 2015, 10, 23.	5.7	75
11	Copper nanoparticles as an alternative feed additive in poultry diet: a review. Nanotechnology Reviews, 2018, 7, 69-93.	5.8	65
12	Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Research Letters, 2013, 8, 195.	5.7	61
13	Influence of nanoparticles of platinum on chicken embryo development and brain morphology. Nanoscale Research Letters, 2013, 8, 251.	5.7	55
14	The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells. Nanoscale Research Letters, 2015, 10, 98.	5.7	54
15	Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines. PLoS ONE, 2015, 10, e0122579.	2.5	53
16	Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo. International Journal of Nanomedicine, 2011, 6, 3041.	6.7	48
17	In Ovo Administration of Silver Nanoparticles and/or Amino Acids Influence Metabolism and Immune Gene Expression in Chicken Embryos. International Journal of Molecular Sciences, 2015, 16, 9484-9503.	4.1	48
18	Toxicity of pristine graphene in experiments in a chicken embryo model. International Journal of Nanomedicine, 2014, 9, 3913.	6.7	46

#	Article	IF	CITATIONS
19	Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastomamultiforme cells. International Journal of Nanomedicine, 2014, 9, 2409.	6.7	46
20	Long Term Influence of Carbon Nanoparticles on Health and Liver Status in Rats. PLoS ONE, 2015, 10, e0144821.	2.5	45
21	<i>In ovo</i> administration of copper nanoparticles and copper sulfate positively influences chicken performance. Journal of the Science of Food and Agriculture, 2016, 96, 3058-3062.	3.5	44
22	Visualization of gold and platinum nanoparticles interacting with Salmonella Enteritidis and Listeria monocytogenes. International Journal of Nanomedicine, 2010, 5, 631.	6.7	40
23	Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme. Archives of Medical Science, 2017, 6, 1322-1334.	0.9	40
24	Degradation of Mitochondria and Oxidative Stress as the Main Mechanism of Toxicity of Pristine Graphene on U87 Glioblastoma Cells and Tumors and HS-5 Cells. International Journal of Molecular Sciences, 2019, 20, 650.	4.1	38
25	Graphene Functionalized with Arginine Decreases the Development of Glioblastoma Multiforme Tumor in a Gene-Dependent Manner. International Journal of Molecular Sciences, 2015, 16, 25214-25233.	4.1	36
26	Graphene Oxide in a Composite with Silver Nanoparticles Reduces the Fibroblast and Endothelial Cell Cytotoxicity of an Antibacterial Nanoplatform. Nanoscale Research Letters, 2019, 14, 320.	5.7	36
27	Toxicity studies of six types of carbon nanoparticles in a chicken-embryo model. International Journal of Nanomedicine, 2017, Volume 12, 2887-2898.	6.7	35
28	Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis. International Journal of Nanomedicine, 2013, 8, 3427.	6.7	34
29	Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion. International Journal of Nanomedicine, 2017, Volume 12, 7241-7254.	6.7	33
30	Influence of different fibre sources on digestibility and nitrogen and energy balances in growing pigs. Archives of Animal Nutrition, 2006, 60, 390-401.	1.8	32
31	Nano-Nutrition of Chicken Embryos. The Effect of in Ovo Administration of Diamond Nanoparticles and I-Glutamine on Molecular Responses in Chicken Embryo Pectoral Muscles. International Journal of Molecular Sciences, 2013, 14, 23033-23044.	4.1	32
32	Effect of taurine and gold nanoparticles on the morphological and molecular characteristics of muscle development during chicken embryogenesis. Archives of Animal Nutrition, 2012, 66, 1-13.	1.8	29
33	Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart. Nanoscale Research Letters, 2012, 7, 418.	5.7	29
34	Effects of Reduced Graphene Oxides on Apoptosis and Cell Cycle of Glioblastoma Multiforme. International Journal of Molecular Sciences, 2018, 19, 3939.	4.1	29
35	Structural damage of chicken red blood cells exposed to platinum nanoparticles and cisplatin. Nanoscale Research Letters, 2014, 9, 257.	5.7	28
36	Diamond Nanoparticles Modify Curcumin Activity: In Vitro Studies on Cancer and Normal Cells and In Ovo Studies on Chicken Embryo Model. PLoS ONE, 2016, 11, e0164637.	2.5	28

#	Article	IF	CITATIONS
37	Use of Selected Carbon Nanoparticles as Melittin Carriers for MCF-7 and MDA-MB-231 Human Breast Cancer Cells. Materials, 2020, 13, 90.	2.9	28
38	Silver and Copper Nanoparticles Inhibit Biofilm Formation by Mastitis Pathogens. Animals, 2021, 11, 1884.	2.3	28
39	Nano-nutrition of chicken embryos. The effect of silver nanoparticles and ATP on expression of chosen genes involved in myogenesis. Archives of Animal Nutrition, 2013, 67, 347-355.	1.8	26
40	Effect of silver nanoparticles and hydroxyproline, administered <i>in ovo</i> , on the development of blood vessels and cartilage collagen structure in chicken embryos. Archives of Animal Nutrition, 2015, 69, 57-68.	1.8	25
41	Graphene oxide down-regulates genes of the oxidative phosphorylation complexes in a glioblastoma. BMC Molecular Biology, 2019, 20, 2.	3.0	25
42	Alginate-based tissue-specific bioinks for multi-material 3D-bioprinting of pancreatic islets and blood vessels: A step towards vascularized pancreas grafts. Bioprinting, 2021, 24, e00163.	5.8	25
43	NF-κB-related decrease of glioma angiogenic potential by graphite nanoparticles and graphene oxide nanoplatelets. Scientific Reports, 2018, 8, 14733.	3.3	24
44	<p>Mechano-signalling, induced by fullerene C₆₀ nanofilms, arrests the cell cycle in the G2/M phase and decreases proliferation of liver cancer cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 6197-6215.	6.7	24
45	Nanocomplexes of Graphene Oxide and Platinum Nanoparticles against Colorectal Cancer Colo205, HT-29, HTC-116, SW480, Liver Cancer HepG2, Human Breast Cancer MCF-7, and Adenocarcinoma LNCaP and Human Cervical Hela B Cell Lines. Materials, 2019, 12, 909.	2.9	24
46	Visualisation of Morphological Interaction of Diamond and Silver Nanoparticles with <i>Salmonella</i> Enteritidis and <i>Listeria Monocytogenes</i> . Journal of Nanoscience and Nanotechnology, 2011, 11, 7635-7641.	0.9	23
47	Interaction of different forms of graphene with chicken embryo red blood cells. Environmental Science and Pollution Research, 2017, 24, 21671-21679.	5.3	22
48	Assessment of the proliferation status of glioblastoma cell and tumour tissue after nanoplatinum treatment. PLoS ONE, 2017, 12, e0178277.	2.5	22
49	Toxicity of different forms of graphene in a chicken embryo model. Environmental Science and Pollution Research, 2016, 23, 19940-19948.	5.3	20
50	Effect of copper nanoparticles administered <i>in ovo</i> on the activity of proliferating cells and on the resistance of femoral bones in broiler chickens. Archives of Animal Nutrition, 2017, 71, 327-332.	1.8	20
51	Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Archives of Animal Nutrition, 2018, 72, 396-406.	1.8	19
52	The Effect of Diamond Nanoparticles on Redox and Immune Parameters in Rats. Journal of Nanoscience and Nanotechnology, 2011, 11, 9072-9077.	0.9	16
53	Nanostructures of diamond, graphene oxide and graphite inhibit CYP1A2, CYP2D6 and CYP3A4 enzymes and downregulate their genes in liver cells. International Journal of Nanomedicine, 2018, Volume 13, 8561-8575.	6.7	16
54	Nanocomposites of Graphene Oxide—Silver Nanoparticles for Enhanced Antibacterial Activity: Mechanism of Action and Medical Textiles Coating. Materials, 2022, 15, 3122.	2.9	16

#	Article	IF	CITATIONS
55	Graphene Oxide Scaffold Stimulates Differentiation and Proangiogenic Activities of Myogenic Progenitor Cells. International Journal of Molecular Sciences, 2020, 21, 4173.	4.1	14
56	Comparison of the Toxicity of Pristine Graphene and Graphene Oxide, Using Four Biological Models. Materials, 2021, 14, 4250.	2.9	13
57	Effects of Graphene Oxide Nanofilm and Chicken Embryo Muscle Extract on Muscle Progenitor Cell Differentiation and Contraction. Molecules, 2020, 25, 1991.	3.8	11
58	Investigating the Effect of In Ovo Injection of Silver Nanoparticles on Fat Uptake and Development in Broiler and Layer Hatchlings. Journal of Nanotechnology, 2012, 2012, 1-7.	3.4	10
59	Does nanobiotechnology create new tools to combat microorganisms?. Nanotechnology Reviews, 2017, 6, 171-189.	5.8	10
60	Graphene oxide nanofilm and the addition of l-glutamine can promote development of embryonic muscle cells. Journal of Nanobiotechnology, 2020, 18, 76.	9.1	10
61	Comparison of tumour morphology and structure from U87 and U118 glioma cells cultured on chicken embryo chorioallantoic membrane. Bulletin of the Veterinary Institute in Pulawy = Biuletyn Instytutu Weterynarii W Pulawach, 2013, 57, 593-598.	0.4	8
62	Graphene oxide nanofilm and chicken embryo extract decrease the invasiveness of HepG2 liver cancer cells. Cancer Nanotechnology, 2021, 12, .	3.7	8
63	MicroRNA Delivery by Graphene-Based Complexes into Glioblastoma Cells. Molecules, 2021, 26, 5804.	3.8	8
64	Effects of Metallic and Carbon-Based Nanomaterials on Human Pancreatic Cancer Cell Lines AsPC-1 and BxPC-3. International Journal of Molecular Sciences, 2021, 22, 12100.	4.1	8
65	Molecular Biocompatibility of a Silver Nanoparticle Complex with Graphene Oxide to Human Skin in a 3D Epidermis In Vitro Model. Pharmaceutics, 2022, 14, 1398.	4.5	8
66	Morphology of Human Glioblastoma Model Cultured in Ovo. Bulletin of the Veterinary Institute in Pulawy = Biuletyn Instytutu Weterynarii W Pulawach, 2012, 56, 261-266.	0.4	5
67	Calcium Carbonate Nanoparticles—Toxicity and Effect of In Ovo Inoculation on Chicken Embryo Development, Broiler Performance and Bone Status. Animals, 2021, 11, 932.	2.3	5
68	Effect of Different Levels of Copper Nanoparticles and Copper Sulfate on Morphometric Indices, Antioxidant Status and Mineral Digestibility in the Small Intestine of Turkeys. Annals of Animal Science, 2020, 20, 975-990.	1.6	5
69	Effect of <i>in ovo</i> application of hydroxyapatite nanoparticles on chicken embryo development, oxidative status and bone characteristics. Archives of Animal Nutrition, 2020, 74, 343-361.	1.8	4
70	Effect of Muscle Extract and Graphene Oxide on Muscle Structure of Chicken Embryos. Animals, 2021, 11, 3467.	2.3	4
71	Influence of Selected Carbon Nanostructures on the CYP2C9 Enzyme of the P450 Cytochrome. Materials, 2019, 12, 4149.	2.9	3
72	Effect of Graphene Family Materials on Multiple Myeloma and Non-Hodgkin's Lymphoma Cell Lines. Materials, 2020, 13, 3420.	2.9	3

#	Article	IF	CITATIONS
73	Silver and Graphenic Carbon Nanostructures Differentially Influence the Morphology and Viability of Cardiac Progenitor Cells. Materials, 2020, 13, 2159.	2.9	3
74	Diamond Nanofilm Normalizes Proliferation and Metabolism in Liver Cancer Cells. Nanotechnology, Science and Applications, 2021, Volume 14, 115-137.	4.6	3
75	The future survival of African elephants: implications for conservation. International International Journal of Avian & Wildlife Biology, 2018, 3, .	0.1	2
76	Redox and Immunological Status of Turkeys Fed Diets with Different Levels and Sources of Copper. Annals of Animal Science, 2019, 19, 215-227.	1.6	2
77	Nitrogen excretion in rats on a protein-free diet and during starvation. Archives of Animal Nutrition, 2008, 62, 82-85.	1.8	1