Tuomas P J Knowles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2402254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology, 2014, 15, 384-396.	37.0	1,894
2	Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9758-9763.	7.1	1,162
3	An Analytical Solution to the Kinetics of Breakable Filament Assembly. Science, 2009, 326, 1533-1537.	12.6	970
4	Direct Observation of the Interconversion of Normal and Toxic Forms of α-Synuclein. Cell, 2012, 149, 1048-1059.	28.9	755
5	Nanomechanics of functional and pathological amyloid materials. Nature Nanotechnology, 2011, 6, 469-479.	31.5	703
6	On the lag phase in amyloid fibril formation. Physical Chemistry Chemical Physics, 2015, 17, 7606-7618.	2.8	590
7	Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7671-7676.	7.1	546
8	Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nature Protocols, 2016, 11, 252-272.	12.0	546
9	Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nature Chemical Biology, 2015, 11, 229-234.	8.0	532
10	Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5468-5473.	7.1	479
11	Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials. Advanced Materials, 2016, 28, 6546-6561.	21.0	430
12	Biomimetic peptide self-assembly for functional materials. Nature Reviews Chemistry, 2020, 4, 615-634.	30.2	411
13	From Macroscopic Measurements to Microscopic Mechanisms of Protein Aggregation. Journal of Molecular Biology, 2012, 421, 160-171.	4.2	407
14	Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9384-9389.	7.1	405
15	Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1994-2003.	7.1	384
16	A molecular chaperone breaks the catalytic cycle that generates toxic AÎ ² oligomers. Nature Structural and Molecular Biology, 2015, 22, 207-213.	8.2	373
17	Metastability of Native Proteins and the Phenomenon of Amyloid Formation. Journal of the American Chemical Society, 2011, 133, 14160-14163.	13.7	369
18	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	38.1	345

#	Article	IF	CITATIONS
19	Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nature Nanotechnology, 2010, 5, 204-207.	31.5	338
20	RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether. Cell, 2019, 179, 147-164.e20.	28.9	327
21	Secondary nucleation in amyloid formation. Chemical Communications, 2018, 54, 8667-8684.	4.1	323
22	Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. Journal of Chemical Physics, 2011, 135, 065105.	3.0	270
23	Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10328-10333.	7.1	252
24	Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nature Communications, 2021, 12, 1085.	12.8	245
25	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie - International Edition, 2019, 58, 18116-18123.	13.8	241
26	A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1009-E1017.	7.1	231
27	Dynamics of oligomer populations formed during the aggregation of Alzheimer's Aβ42 peptide. Nature Chemistry, 2020, 12, 445-451.	13.6	223
28	Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nature Communications, 2016, 7, 10948.	12.8	219
29	The Role of Stable α-Synuclein Oligomers in the Molecular Events Underlying Amyloid Formation. Journal of the American Chemical Society, 2014, 136, 3859-3868.	13.7	218
30	Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nature Communications, 2014, 5, 5219.	12.8	197
31	Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends in Pharmacological Sciences, 2014, 35, 127-135.	8.7	191
32	Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10016-10021.	7.1	186
33	Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nature Chemistry, 2018, 10, 673-683.	13.6	186
34	Secondary nucleation of monomers on fibril surface dominates <i>α</i> -synuclein aggregation and provides autocatalytic amyloid amplification. Quarterly Reviews of Biophysics, 2017, 50, e6.	5.7	183
35	Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1206-15.	7.1	181
36	An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Al²42 aggregates linked with Alzheimer's disease. Science Advances, 2016, 2, e1501244.	10.3	180

#	Article	IF	CITATIONS
37	Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E200-E208.	7.1	180
38	A mechanistic model of tau amyloid aggregation based on direct observation of oligomers. Nature Communications, 2015, 6, 7025.	12.8	179
39	Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations. Journal of Chemical Physics, 2011, 135, 065106.	3.0	166
40	Chemical Kinetics for Bridging Molecular Mechanisms and Macroscopic Measurements of Amyloid Fibril Formation. Annual Review of Physical Chemistry, 2018, 69, 273-298.	10.8	161
41	Interaction of the Molecular Chaperone DNAJB6 with Growing Amyloid-beta 42 (Aβ42) Aggregates Leads to Sub-stoichiometric Inhibition of Amyloid Formation. Journal of Biological Chemistry, 2014, 289, 31066-31076.	3.4	158
42	Crucial role of nonspecific interactions in amyloid nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17869-17874.	7.1	157
43	Binding of the Molecular Chaperone αB-Crystallin to Aβ Amyloid Fibrils Inhibits Fibril Elongation. Biophysical Journal, 2011, 101, 1681-1689.	0.5	143
44	The S/T-Rich Motif in the DNAJB6 Chaperone Delays Polyglutamine Aggregation and the Onset of Disease in a Mouse Model. Molecular Cell, 2016, 62, 272-283.	9.7	140
45	Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nature Communications, 2019, 10, 1541.	12.8	140
46	The Interaction of αB-Crystallin with Mature α-Synuclein Amyloid Fibrils Inhibits Their Elongation. Biophysical Journal, 2010, 98, 843-851.	0.5	136
47	Observation of spatial propagation of amyloid assembly from single nuclei. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14746-14751.	7.1	134
48	Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide. Nature Chemistry, 2018, 10, 523-531.	13.6	129
49	Secondary nucleation and elongation occur at different sites on Alzheimer's amyloid-β aggregates. Science Advances, 2019, 5, eaau3112.	10.3	127
50	Targeting the Intrinsically Disordered Structural Ensemble of α-Synuclein by Small Molecules as a Potential Therapeutic Strategy for Parkinson's Disease. PLoS ONE, 2014, 9, e87133.	2.5	126
51	Kinetic fingerprints differentiate the mechanisms of action of anti-AÎ ² antibodies. Nature Structural and Molecular Biology, 2020, 27, 1125-1133.	8.2	123
52	The Aβ40 and Aβ42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation. Chemical Science, 2015, 6, 4215-4233.	7.4	121
53	Quantification of the Concentration of Aβ42 Propagons during the Lag Phase by an Amyloid Chain Reaction Assay. Journal of the American Chemical Society, 2014, 136, 219-225.	13.7	120
54	Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces. Nature Communications, 2016, 7, 12934.	12.8	116

#	Article	IF	CITATIONS
55	Selective targeting of primary and secondary nucleation pathways in Aβ42 aggregation using a rational antibody scanning method. Science Advances, 2017, 3, e1700488.	10.3	116
56	Detailed Analysis of the Energy Barriers for Amyloid Fibril Growth. Angewandte Chemie - International Edition, 2012, 51, 5247-5251.	13.8	112
57	Trodusquemine enhances Al²42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nature Communications, 2019, 10, 225.	12.8	111
58	The Amyloid Phenomenon and Its Significance in Biology and Medicine. Cold Spring Harbor Perspectives in Biology, 2020, 12, a033878.	5.5	111
59	Atomic force microscopy for single molecule characterisation of protein aggregation. Archives of Biochemistry and Biophysics, 2019, 664, 134-148.	3.0	109
60	Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	107
61	Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions. ACS Nano, 2016, 10, 333-341.	14.6	105
62	Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nature Energy, 2018, 3, 75-81.	39.5	103
63	Kinetic diversity of amyloid oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12087-12094.	7.1	103
64	Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nature Nanotechnology, 2020, 15, 841-847.	31.5	101
65	On the role of sidechain size and charge in the aggregation of A <i>β</i> 42 with familial mutations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5849-E5858.	7.1	98
66	Determination of Polypeptide Conformation with Nanoscale Resolution in Water. ACS Nano, 2018, 12, 6612-6619.	14.6	97
67	Silk micrococoons for protein stabilisation and molecular encapsulation. Nature Communications, 2017, 8, 15902.	12.8	96
68	Identification and nanomechanical characterization of the fundamental single-strand protofilaments of amyloid α-synuclein fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7230-7235.	7.1	96
69	Learning the molecular grammar of protein condensates from sequence determinants and embeddings. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	96
70	Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer's disease. Science Advances, 2020, 6, .	10.3	95
71	Conserved C-Terminal Charge Exerts a Profound Influence on the Aggregation Rate of α-Synuclein. Journal of Molecular Biology, 2011, 411, 329-333.	4.2	92
72	Nucleated polymerization with secondary pathways. III. Equilibrium behavior and oligomer populations. Journal of Chemical Physics, 2011, 135, 065107.	3.0	92

#	Article	IF	CITATIONS
73	Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson's disease genetically related mutants. Scientific Reports, 2015, 5, 16696.	3.3	92
74	Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nature Communications, 2020, 11, 2945.	12.8	92
75	Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly. ACS Nano, 2016, 10, 7436-7442.	14.6	91
76	Physical determinants of the self-replication of protein fibrils. Nature Physics, 2016, 12, 874-880.	16.7	90
77	Dynamic microfluidic control of supramolecular peptide self-assembly. Nature Communications, 2016, 7, 13190.	12.8	89
78	Electrostatic Effects in Filamentous Protein Aggregation. Biophysical Journal, 2013, 104, 1116-1126.	0.5	88
79	Multistep Inhibition of α-Synuclein Aggregation and Toxicity <i>in Vitro</i> and <i>in Vivo</i> by Trodusquemine. ACS Chemical Biology, 2018, 13, 2308-2319.	3.4	86
80	From Protein Building Blocks to Functional Materials. ACS Nano, 2021, 15, 5819-5837.	14.6	83
81	Budding-like division of all-aqueous emulsion droplets modulated by networks of protein nanofibrils. Nature Communications, 2018, 9, 2110.	12.8	82
82	Fast Flow Microfluidics and Single-Molecule Fluorescence for the Rapid Characterization of α-Synuclein Oligomers. Analytical Chemistry, 2015, 87, 8818-8826.	6.5	81
83	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie, 2019, 131, 18284-18291.	2.0	79
84	Conformational Expansion of Tau in Condensates Promotes Irreversible Aggregation. Journal of the American Chemical Society, 2021, 143, 13056-13064.	13.7	78
85	Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of Alzheimer-associated Al2-peptide. Scientific Reports, 2016, 6, 18728.	3.3	77
86	Origin of metastable oligomers and their effects on amyloid fibril self-assembly. Chemical Science, 2018, 9, 5937-5948.	7.4	76
87	Kinetics of spontaneous filament nucleation via oligomers: Insights from theory and simulation. Journal of Chemical Physics, 2016, 145, 211926.	3.0	73
88	Population of Nonnative States of Lysozyme Variants Drives Amyloid Fibril Formation. Journal of the American Chemical Society, 2011, 133, 7737-7743.	13.7	72
89	Ultrasensitive Measurement of Ca ²⁺ Influx into Lipid Vesicles Induced by Protein Aggregates. Angewandte Chemie - International Edition, 2017, 56, 7750-7754.	13.8	72
90	In vivo rate-determining steps of tau seed accumulation in Alzheimer's disease. Science Advances, 2021, 7, eabh1448.	10.3	70

#	Article	IF	CITATIONS
91	Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Scientific Reports, 2016, 6, 25288.	3.3	67
92	Physical Determinants of Amyloid Assembly in Biofilm Formation. MBio, 2019, 10, .	4.1	66
93	β-Synuclein suppresses both the initiation and amplification steps of α-synuclein aggregation via competitive binding to surfaces. Scientific Reports, 2016, 6, 36010.	3.3	65
94	Scaling behaviour and rate-determining steps in filamentous self-assembly. Chemical Science, 2017, 8, 7087-7097.	7.4	65
95	C-terminal truncation of α-synuclein promotes amyloid fibril amplification at physiological pH. Chemical Science, 2018, 9, 5506-5516.	7.4	64
96	Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer's disease progression. Acta Neuropathologica Communications, 2019, 7, 120.	5.2	64
97	Identification of on- and off-pathway oligomers in amyloid fibril formation. Chemical Science, 2020, 11, 6236-6247.	7.4	64
98	Frequency Factors in a Landscape Model of Filamentous Protein Aggregation. Physical Review Letters, 2010, 104, 228101.	7.8	63
99	Connecting Macroscopic Observables and Microscopic Assembly Events in Amyloid Formation Using Coarse Grained Simulations. PLoS Computational Biology, 2012, 8, e1002692.	3.2	63
100	Nanobodies raised against monomeric É'-synuclein inhibit fibril formation and destabilize toxic oligomeric species. BMC Biology, 2017, 15, 57.	3.8	61
101	Rational design of a conformation-specific antibody for the quantification of AÎ ² oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13509-13518.	7.1	61
102	The physical chemistry of the amyloid phenomenon: thermodynamics and kinetics of filamentous protein aggregation. Essays in Biochemistry, 2014, 56, 11-39.	4.7	60
103	Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the AÎ ² 42 peptide and its variants. Chemical Science, 2017, 8, 4352-4362.	7.4	60
104	Phage display and kinetic selection of antibodies that specifically inhibit amyloid self-replication. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6444-6449.	7.1	60
105	Transthyretin Inhibits Primary and Secondary Nucleations of Amyloid-β Peptide Aggregation and Reduces the Toxicity of Its Oligomers. Biomacromolecules, 2020, 21, 1112-1125.	5.4	59
106	The Influence of Pathogenic Mutations in α-Synuclein on Biophysical and Structural Characteristics of Amyloid Fibrils. ACS Nano, 2020, 14, 5213-5222.	14.6	58
107	The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25272-25283.	7.1	58
108	The Component Polypeptide Chains of Bovine Insulin Nucleate or Inhibit Aggregation of the Parent Protein in a Conformation-dependent Manner. Journal of Molecular Biology, 2006, 360, 497-509.	4.2	56

#	Article	IF	CITATIONS
109	Latent analysis of unmodified biomolecules and their complexes in solution with attomole detection sensitivity. Nature Chemistry, 2015, 7, 802-809.	13.6	56
110	Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteineâ€6elective Protein Modification and Charge Modulation. Angewandte Chemie - International Edition, 2019, 58, 6640-6644.	13.8	55
111	SAR by kinetics for drug discovery in protein misfolding diseases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10245-10250.	7.1	54
112	Massively parallel C. elegans tracking provides multi-dimensional fingerprints for phenotypic discovery. Journal of Neuroscience Methods, 2018, 306, 57-67.	2.5	52
113	Infrared nanospectroscopy reveals the molecular interaction fingerprint of an aggregation inhibitor with single Al ² 42 oligomers. Nature Communications, 2021, 12, 688.	12.8	52
114	Electrostatically-guided inhibition of Curli amyloid nucleation by the CsgC-like family of chaperones. Scientific Reports, 2016, 6, 24656.	3.3	51
115	Oligomer Diversity during the Aggregation of the Repeat Region of Tau. ACS Chemical Neuroscience, 2018, 9, 3060-3071.	3.5	50
116	Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films. Nature Communications, 2021, 12, 3529.	12.8	50
117	Microfluidics for Protein Biophysics. Journal of Molecular Biology, 2018, 430, 565-580.	4.2	49
118	Thermodynamic and kinetic design principles for amyloid-aggregation inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24251-24257.	7.1	49
119	Interactions of α-synuclein oligomers with lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183536.	2.6	49
120	Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. Nano Letters, 2022, 22, 612-621.	9.1	49
121	Twisting Transition between Crystalline and Fibrillar Phases of Aggregated Peptides. Physical Review Letters, 2012, 109, 158101.	7.8	48
122	Quantitative thermophoretic study of disease-related protein aggregates. Scientific Reports, 2016, 6, 22829.	3.3	48
123	Digital Sensing and Molecular Computation by an Enzyme-Free DNA Circuit. ACS Nano, 2020, 14, 5763-5771.	14.6	48
124	Inhibition of α-Synuclein Fibril Elongation by Hsp70 Is Governed by a Kinetic Binding Competition between α-Synuclein Species. Biochemistry, 2017, 56, 1177-1180.	2.5	47
125	Nanoscale spatially resolved infrared spectra from single microdroplets. Lab on A Chip, 2014, 14, 1315-1319.	6.0	46
126	Identification of Oxidative Stress in Red Blood Cells with Nanoscale Chemical Resolution by Infrared Nanospectroscopy. International Journal of Molecular Sciences, 2018, 19, 2582.	4.1	46

#	Article	IF	CITATIONS
127	Autocatalytic amplification of Alzheimer-associated Aβ42 peptide aggregation in human cerebrospinal fluid. Communications Biology, 2019, 2, 365.	4.4	46
128	Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms. Scientific Reports, 2016, 6, 28658.	3.3	45
129	Monomeric and fibrillar α-synuclein exert opposite effects on the catalytic cycle that promotes the proliferation of Aβ42 aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8005-8010.	7.1	45
130	Scalable integration of nano-, and microfluidics with hybrid two-photon lithography. Microsystems and Nanoengineering, 2019, 5, 40.	7.0	45
131	Direct Observation of Oligomerization by Single Molecule Fluorescence Reveals a Multistep Aggregation Mechanism for the Yeast Prion Protein Ure2. Journal of the American Chemical Society, 2018, 140, 2493-2503.	13.7	44
132	Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism. Communications Biology, 2020, 3, 435.	4.4	44
133	LAG3 is not expressed in human and murine neurons and does not modulate αâ€synucleinopathies. EMBO Molecular Medicine, 2021, 13, e14745.	6.9	44
134	Enzymatically Active Microgels from Self-Assembling Protein Nanofibrils for Microflow Chemistry. ACS Nano, 2015, 9, 5772-5781.	14.6	43
135	Microfluidic devices fabricated using fast wafer-scale LED-lithography patterning. Biomicrofluidics, 2017, 11, 014113.	2.4	42
136	Real-Time Intrinsic Fluorescence Visualization and Sizing of Proteins and Protein Complexes in Microfluidic Devices. Analytical Chemistry, 2018, 90, 3849-3855.	6.5	42
137	Stabilization and Characterization of Cytotoxic Aβ ₄₀ Oligomers Isolated from an Aggregation Reaction in the Presence of Zinc Ions. ACS Chemical Neuroscience, 2018, 9, 2959-2971.	3.5	42
138	Label-Free Analysis of Protein Aggregation and Phase Behavior. ACS Nano, 2019, 13, 13940-13948.	14.6	42
139	Dynamics of protein aggregation and oligomer formation governed by secondary nucleation. Journal of Chemical Physics, 2015, 143, 054901.	3.0	41
140	Microfluidic deposition for resolving single-molecule protein architecture and heterogeneity. Nature Communications, 2018, 9, 3890.	12.8	40
141	Nucleation-conversion-polymerization reactions of biological macromolecules with prenucleation clusters. Physical Review E, 2014, 89, 032712.	2.1	39
142	On-chip label-free protein analysis with downstream electrodes for direct removal of electrolysis products. Lab on A Chip, 2018, 18, 162-170.	6.0	39
143	Modulating the Mechanical Performance of Macroscale Fibers through Shearâ€Induced Alignment and Assembly of Protein Nanofibrils. Small, 2020, 16, e1904190.	10.0	39
144	Quantifying Co-Oligomer Formation by α-Synuclein. ACS Nano, 2018, 12, 10855-10866.	14.6	38

#	Article	IF	CITATIONS
145	Direct measurement of lipid membrane disruption connects kinetics and toxicity of AÎ ² 42 aggregation. Nature Structural and Molecular Biology, 2020, 27, 886-891.	8.2	38
146	Biocompatible Hybrid Organic/Inorganic Microhydrogels Promote Bacterial Adherence and Eradication <i>in Vitro</i> and <i>in Vivo</i> . Nano Letters, 2020, 20, 1590-1597.	9.1	38
147	Coating and Stabilization of Liposomes by Clathrin-Inspired DNA Self-Assembly. ACS Nano, 2020, 14, 2316-2323.	14.6	38
148	Mechanism of Secondary Nucleation at the Single Fibril Level from Direct Observations of AÎ ² 42 Aggregation. Journal of the American Chemical Society, 2021, 143, 16621-16629.	13.7	38
149	Ultrastructural evidence for self-replication of Alzheimer-associated AÎ ² 42 amyloid along the sides of fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11265-11273.	7.1	37
150	The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nature Communications, 2021, 12, 5999.	12.8	37
151	Role of filament annealing in the kinetics and thermodynamics of nucleated polymerization. Journal of Chemical Physics, 2014, 140, 214904.	3.0	36
152	Molecular Rotors Provide Insights into Microscopic Structural Changes During Protein Aggregation. Journal of Physical Chemistry B, 2015, 119, 10170-10179.	2.6	36
153	Ultrathin Polydopamine Films with Phospholipid Nanodiscs Containing a Glycophorin A Domain. Advanced Functional Materials, 2020, 30, 2000378.	14.9	36
154	A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins. ACS Combinatorial Science, 2016, 18, 144-153.	3.8	35
155	Selfâ€Assembly of Amyloid Fibrils That Display Active Enzymes. ChemCatChem, 2014, 6, 1961-1968.	3.7	34
156	Squalamine and Its Derivatives Modulate the Aggregation of Amyloid-β and α-Synuclein and Suppress the Toxicity of Their Oligomers. Frontiers in Neuroscience, 2021, 15, 680026.	2.8	34
157	Elastic instability-mediated actuation by a supra-molecular polymer. Nature Physics, 2016, 12, 926-930.	16.7	32
158	Hamiltonian Dynamics of Protein Filament Formation. Physical Review Letters, 2016, 116, 038101.	7.8	32
159	Fluctuations in the Kinetics of Linear Protein Self-Assembly. Physical Review Letters, 2016, 116, 258103.	7.8	32
160	Microfluidic approaches for the analysis of protein–protein interactionsÂin solution. Biophysical Reviews, 2020, 12, 575-585.	3.2	32
161	Soluble amyloid beta-containing aggregates are present throughout the brain at early stages of Alzheimer's disease. Brain Communications, 2021, 3, fcab147.	3.3	32
162	Antibody Affinity Governs the Inhibition of SARS-CoV-2 Spike/ACE2 Binding in Patient Serum. ACS Infectious Diseases, 2021, 7, 2362-2369.	3.8	32

#	Article	IF	CITATIONS
163	Biophotonics of Native Silk Fibrils. Macromolecular Bioscience, 2018, 18, e1700295.	4.1	31
164	Kinetic barriers to $\hat{l}\pm$ -synuclein protofilament formation and conversion into mature fibrils. Chemical Communications, 2018, 54, 7854-7857.	4.1	31
165	Converting lateral scanning into axial focusing to speed up three-dimensional microscopy. Light: Science and Applications, 2020, 9, 165.	16.6	31
166	Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry. Biomacromolecules, 2017, 18, 3642-3651.	5.4	30
167	Physical mechanisms of amyloid nucleation on fluid membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33090-33098.	7.1	30
168	The C-terminal tail of α-synuclein protects against aggregate replication but is critical for oligomerization. Communications Biology, 2022, 5, 123.	4.4	30
169	A Microfluidic Platform for Real-Time Detection and Quantification of Protein-Ligand Interactions. Biophysical Journal, 2016, 110, 1957-1966.	0.5	29
170	Consistent Treatment of Hydrophobicity in Protein Lattice Models Accounts for Cold Denaturation. Physical Review Letters, 2016, 116, 078101.	7.8	29
171	Microfluidic Diffusion Viscometer for Rapid Analysis of Complex Solutions. Analytical Chemistry, 2016, 88, 3488-3493.	6.5	29
172	Waterâ€Dispersible Polydopamine oated Nanofibers for Stimulation of Neuronal Growth and Adhesion. Advanced Healthcare Materials, 2018, 7, e1701485.	7.6	29
173	Enhancing the Resolution of Micro Free Flow Electrophoresis through Spatially Controlled Sample Injection. Analytical Chemistry, 2018, 90, 8998-9005.	6.5	29
174	Fabrication and Characterization of Reconstituted Silk Microgels for the Storage and Release of Small Molecules. Macromolecular Rapid Communications, 2019, 40, e1800898.	3.9	29
175	Asymptotic solutions of the Oosawa model for the length distribution of biofilaments. Journal of Chemical Physics, 2014, 140, 194906.	3.0	28
176	Thermodynamics of Polypeptide Supramolecular Assembly in the Short-Chain Limit. Journal of the American Chemical Society, 2017, 139, 16134-16142.	13.7	28
177	Observation of molecular self-assembly events in massively parallel microdroplet arrays. Lab on A Chip, 2018, 18, 3303-3309.	6.0	28
178	Controllable coacervation of recombinantly produced spider silk protein using kosmotropic salts. Journal of Colloid and Interface Science, 2020, 560, 149-160.	9.4	28
179	Relationship between Prion Propensity and the Rates of Individual Molecular Steps of Fibril Assembly. Journal of Biological Chemistry, 2011, 286, 12101-12107.	3.4	27
180	Synthesis of Nonequilibrium Supramolecular Peptide Polymers on a Microfluidic Platform. Journal of the American Chemical Society, 2016, 138, 9589-9596.	13.7	27

#	Article	IF	CITATIONS
181	Particle-Based Monte-Carlo Simulations of Steady-State Mass Transport at Intermediate Péclet Numbers. International Journal of Nonlinear Sciences and Numerical Simulation, 2016, 17, 175-183.	1.0	27
182	Microfluidic approaches for probing amyloid assembly and behaviour. Lab on A Chip, 2018, 18, 999-1016.	6.0	27
183	Screening of small molecules using the inhibition of oligomer formation in \hat{I}_{\pm} -synuclein aggregation as a selection parameter. Communications Chemistry, 2020, 3, .	4.5	27
184	Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Natural Product Reports, 2022, 39, 742-753.	10.3	27
185	Aggregationâ€Prone Amyloidâ€Î²â‹Cu ^{II} Species Formed on the Millisecond Timescale under Mildly Acidic Conditions. ChemBioChem, 2015, 16, 1293-1297.	2.6	26
186	Micro- and nanoscale hierarchical structure of core–shell protein microgels. Journal of Materials Chemistry B, 2016, 4, 7989-7999.	5.8	26
187	On the Mechanism of Self-Assembly by a Hydrogel-Forming Peptide. Biomacromolecules, 2020, 21, 4781-4794.	5.4	26
188	Single Point Mutations Induce a Switch in the Molecular Mechanism of the Aggregation of the Alzheimer's Disease Associated Aβ ₄₂ Peptide. ACS Chemical Biology, 2014, 9, 378-382.	3.4	25
189	Force generation by the growth of amyloid aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9524-9529.	7.1	25
190	Gradient-free determination of isoelectric points of proteins on chip. Physical Chemistry Chemical Physics, 2017, 19, 23060-23067.	2.8	25
191	A dopamine metabolite stabilizes neurotoxic amyloid-Î ² oligomers. Communications Biology, 2021, 4, 19.	4.4	25
192	Kinetic theory of protein filament growth: Self-consistent methods and perturbative techniques. International Journal of Modern Physics B, 2015, 29, 1530002.	2.0	24
193	Rapid Structural, Kinetic, and Immunochemical Analysis of Alpha-Synuclein Oligomers in Solution. Nano Letters, 2020, 20, 8163-8169.	9.1	24
194	The catalytic nature of protein aggregation. Journal of Chemical Physics, 2020, 152, 045101.	3.0	24
195	Surface-Catalyzed Secondary Nucleation Dominates the Generation of Toxic IAPP Aggregates. Frontiers in Molecular Biosciences, 2021, 8, 757425.	3.5	24
196	Direct Observation of Murine Prion Protein Replication in Vitro. Journal of the American Chemical Society, 2018, 140, 14789-14798.	13.7	23
197	Assessing motor-related phenotypes of Caenorhabditis elegans with the wide field-of-view nematode tracking platform. Nature Protocols, 2020, 15, 2071-2106.	12.0	23
198	Direct observation of prion protein oligomer formation reveals an aggregation mechanism with multiple conformationally distinct species. Chemical Science, 2019, 10, 4588-4597.	7.4	22

#	Article	IF	CITATIONS
199	Complexity in Lipid Membrane Composition Induces Resilience to Aβ ₄₂ Aggregation. ACS Chemical Neuroscience, 2020, 11, 1347-1352.	3.5	22
200	Scaling analysis reveals the mechanism and rates of prion replication in vivo. Nature Structural and Molecular Biology, 2021, 28, 365-372.	8.2	22
201	Absolute Quantification of Amyloid Propagons by Digital Microfluidics. Analytical Chemistry, 2017, 89, 12306-12313.	6.5	21
202	Mechanobiology of Protein Droplets: Force Arises from Disorder. Cell, 2018, 175, 1457-1459.	28.9	21
203	Microfluidic Diffusion Platform for Characterizing the Sizes of Lipid Vesicles and the Thermodynamics of Protein–Lipid Interactions. Analytical Chemistry, 2018, 90, 3284-3290.	6.5	20
204	Extrinsic Amyloid-Binding Dyes for Detection of Individual Protein Aggregates in Solution. Analytical Chemistry, 2018, 90, 10385-10393.	6.5	20
205	Templating S100A9 amyloids on Aβ fibrillar surfaces revealed by charge detection mass spectrometry, microscopy, kinetic and microfluidic analyses. Chemical Science, 2020, 11, 7031-7039.	7.4	20
206	Enhanced Quality Factor Label-free Biosensing with Micro-Cantilevers Integrated into Microfluidic Systems. Analytical Chemistry, 2017, 89, 11929-11936.	6.5	20
207	Recent Advances in Microgels: From Biomolecules to Functionality. Small, 2022, 18, .	10.0	20
208	The length distribution of frangible biofilaments. Journal of Chemical Physics, 2015, 143, 164901.	3.0	19
209	Reaction rate theory for supramolecular kinetics: application to protein aggregation. Molecular Physics, 2018, 116, 3055-3065.	1.7	19
210	Sequenceâ€Optimized Peptide Nanofibers as Growth Stimulators for Regeneration of Peripheral Neurons. Advanced Functional Materials, 2019, 29, 1809112.	14.9	19
211	Lipid-Stabilized Double Emulsions Generated in Planar Microfluidic Devices. Langmuir, 2020, 36, 2349-2356.	3.5	19
212	Kinetic and Thermodynamic Driving Factors in the Assembly of Phenylalanine-Based Modules. ACS Nano, 2021, 15, 18305-18311.	14.6	19
213	Proliferation of Tau 304–380 Fragment Aggregates through Autocatalytic Secondary Nucleation. ACS Chemical Neuroscience, 2021, 12, 4406-4415.	3.5	19
214	A microfluidic platform for quantitative measurements of effective protein charges and single ion binding in solution. Physical Chemistry Chemical Physics, 2015, 17, 12161-12167.	2.8	18
215	Kinetic constraints on self-assembly into closed supramolecular structures. Scientific Reports, 2017, 7, 12295.	3.3	18
216	Enhancement of the Anti-Aggregation Activity of a Molecular Chaperone Using a Rationally Designed Post-Translational Modification. ACS Central Science, 2019, 5, 1417-1424.	11.3	18

#	Article	IF	CITATIONS
217	Effects of sedimentation, microgravity, hydrodynamic mixing and air–water interface on α-synuclein amyloid formation. Chemical Science, 2020, 11, 3687-3693.	7.4	18
218	Shear-mediated sol-gel transition of regenerated silk allows the formation of Janus-like microgels. Scientific Reports, 2021, 11, 6673.	3.3	18
219	Liquid–Liquid Phase‧eparated Systems from Reversible Gel–Sol Transition of Protein Microgels. Advanced Materials, 2021, 33, e2008670.	21.0	18
220	A Microfluidic Coâ€Flow Route for Human Serum Albuminâ€Drug–Nanoparticle Assembly. Chemistry - A European Journal, 2020, 26, 5965-5969.	3.3	17
221	Combining Affinity Selection and Specific Ion Mobility for Microchip Protein Sensing. Analytical Chemistry, 2018, 90, 10302-10310.	6.5	16
222	Kinetic Analysis of Amyloid Formation. Methods in Molecular Biology, 2018, 1779, 181-196.	0.9	16
223	Increased Secondary Nucleation Underlies Accelerated Aggregation of the Four-Residue N-Terminally Truncated Al²42 Species Al²5–42. ACS Chemical Neuroscience, 2019, 10, 2374-2384.	3.5	16
224	In situ kinetic measurements of α-synuclein aggregation reveal large population of short-lived oligomers. PLoS ONE, 2021, 16, e0245548.	2.5	16
225	Polymer physics inspired approaches for the study of the mechanical properties of amyloid fibrils. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 281-292.	2.1	15
226	Automated Ex Situ Assays of Amyloid Formation on a Microfluidic Platform. Biophysical Journal, 2016, 110, 555-560.	0.5	15
227	Mechanism of biosurfactant adsorption to oil/water interfaces from millisecond scale tensiometry measurements. Interface Focus, 2017, 7, 20170013.	3.0	15
228	A rationally designed bicyclic peptide remodels Aβ42 aggregation in vitro and reduces its toxicity in a worm model of Alzheimer's disease. Scientific Reports, 2020, 10, 15280.	3.3	15
229	Continuous Flow Reactors from Microfluidic Compartmentalization of Enzymes within Inorganic Microparticles. ACS Applied Materials & Interfaces, 2020, 12, 32951-32960.	8.0	15
230	Protein Conjugation by Electrophilic Alkynylation Using 5-(Alkynyl)dibenzothiophenium Triflates. Bioconjugate Chemistry, 2021, 32, 1570-1575.	3.6	15
231	The binding of the small heat-shock protein αB-crystallin to fibrils of α-synuclein is driven by entropic forces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
232	Sequential Release of Proteins from Structured Multishell Microcapsules. Biomacromolecules, 2017, 18, 3052-3059.	5.4	14
233	Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 27578-27583.	8.0	14
234	Supramolecular Peptide Nanofibrils with Optimized Sequences and Molecular Structures for Efficient Retroviral Transduction. Advanced Functional Materials, 2021, 31, 2009382.	14.9	14

#	Article	IF	CITATIONS
235	Cooperative Assembly of Hsp70 Subdomain Clusters. Biochemistry, 2018, 57, 3641-3649.	2.5	13
236	Rapid two-dimensional characterisation of proteins in solution. Microsystems and Nanoengineering, 2019, 5, 33.	7.0	13
237	Characterizing Individual Protein Aggregates by Infrared Nanospectroscopy and Atomic Force Microscopy. Journal of Visualized Experiments, 2019, , .	0.3	13
238	A microfluidic strategy for the detection of membrane protein interactions. Lab on A Chip, 2020, 20, 3230-3238.	6.0	13
239	Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid fibrils. Nanoscale, 2020, 12, 18663-18672.	5.6	13
240	Kinetic analysis reveals that independent nucleation events determine the progression of polyglutamine aggregation in <i>C. elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
241	pHâ€Responsive Capsules with a Fibril Scaffold Shell Assembled from an Amyloidogenic Peptide. Small, 2021, 17, e2007188.	10.0	13
242	Environmental Control of Amyloid Polymorphism by Modulation of Hydrodynamic Stress. ACS Nano, 2021, 15, 944-953.	14.6	13
243	Kinetic profiling of therapeutic strategies for inhibiting the formation of amyloid oligomers. Journal of Chemical Physics, 2022, 156, 164904.	3.0	13
244	Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 552549.	3.7	12
245	Analysis of the length distribution of amyloid fibrils by centrifugal sedimentation. Analytical Biochemistry, 2016, 504, 7-13.	2.4	11
246	Protein Aggregateâ€Ligand Binding Assays Based on Microfluidic Diffusional Separation. ChemBioChem, 2016, 17, 1920-1924.	2.6	11
247	Nanoscale click-reactive scaffolds from peptide self-assembly. Journal of Nanobiotechnology, 2017, 15, 70.	9.1	11
248	On-chip measurements of protein unfolding from direct observations of micron-scale diffusion. Chemical Science, 2018, 9, 3503-3507.	7.4	11
249	Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine elective Protein Modification and Charge Modulation. Angewandte Chemie, 2019, 131, 6712-6716.	2.0	11
250	Microfluidic Templating of Spatially Inhomogeneous Protein Microgels. Small, 2020, 16, e2000432.	10.0	11
251	Multi-scale microporous silica microcapsules from gas-in water-in oil emulsions. Soft Matter, 2020, 16, 3082-3087.	2.7	11
252	In situ Subâ€Cellular Identification of Functional Amyloids in Bacteria and Archaea by Infrared Nanospectroscopy. Small Methods, 2021, 5, e2001002.	8.6	11

#	Article	IF	CITATIONS
253	Rapid Growth of Acetylated Al̂²(16–20) into Macroscopic Crystals. ACS Nano, 2018, 12, 5408-5416.	14.6	10
254	One-Step Generation of Multisomes from Lipid-Stabilized Double Emulsions. ACS Applied Materials & amp; Interfaces, 2021, 13, 6739-6747.	8.0	10
255	Label-Free Protein Analysis Using Liquid Chromatography with Gravimetric Detection. Analytical Chemistry, 2021, 93, 2848-2853.	6.5	10
256	The unhappy chaperone. QRB Discovery, 2021, 2, .	1.6	10
257	Protein Microgels from Amyloid Fibril Networks. Advances in Experimental Medicine and Biology, 2019, 1174, 223-263.	1.6	10
258	Accelerating Reaction Rates of Biomolecules by Using Shear Stress in Artificial Capillary Systems. Journal of the American Chemical Society, 2021, 143, 16401-16410.	13.7	10
259	Oligomers of Heat-Shock Proteins: Structures That Don't Imply Function. PLoS Computational Biology, 2016, 12, e1004756.	3.2	9
260	Ultrasensitive Measurement of Ca ²⁺ Influx into Lipid Vesicles Induced by Protein Aggregates. Angewandte Chemie, 2017, 129, 7858-7862.	2.0	9
261	Statistical Mechanics of Globular Oligomer Formation by Protein Molecules. Journal of Physical Chemistry B, 2018, 122, 11721-11730.	2.6	9
262	Quantitative Analysis of Diffusive Reactions at the Solid–Liquid Interface in Finite Systems. Journal of Physical Chemistry Letters, 2014, 5, 695-699.	4.6	8
263	Multidimensional protein characterisation using microfluidic post-column analysis. Lab on A Chip, 2020, 20, 2663-2673.	6.0	8
264	New Frontiers for Machine Learning in Protein Science. Journal of Molecular Biology, 2021, 433, 167232.	4.2	8
265	Deformable and Robust Core–Shell Protein Microcapsules Templated by Liquid–Liquid Phase‧eparated Microdroplets. Advanced Materials Interfaces, 2021, 8, 2101071.	3.7	8
266	Micromechanics of soft materials using microfluidics. MRS Bulletin, 2022, 47, 119-126.	3.5	8
267	Mechanistic Models of Protein Aggregation Across Length-Scales and Time-Scales: From the Test Tube to Neurodegenerative Disease. Frontiers in Neuroscience, 0, 16, .	2.8	8
268	Preventing peptide and protein misbehavior. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5267-5268.	7.1	7
269	Automated Behavioral Analysis of Large C. elegans Populations Using a Wide Field-of-view Tracking Platform. Journal of Visualized Experiments, 2018, , .	0.3	7
270	Programmable Onâ€Chip Artificial Cell Producing Postâ€Translationally Modified Ubiquitinated Protein. Small, 2019, 15, 1901780.	10.0	7

#	Article	IF	CITATIONS
271	Pulsed Hydrogen–Deuterium Exchange Reveals Altered Structures and Mechanisms in the Aggregation of Familial Alzheimer's Disease Mutants. ACS Chemical Neuroscience, 2021, 12, 1972-1982.	3.5	7
272	Analysis of αB-crystallin polydispersity in solution through native microfluidic electrophoresis. Analyst, The, 2019, 144, 4413-4424.	3.5	6
273	A method of predicting the in vitro fibril formation propensity of Aβ40 mutants based on their inclusion body levels in E. coli. Scientific Reports, 2019, 9, 3680.	3.3	6
274	Dynamics and Control of Peptide Self-Assembly and Aggregation. Advances in Experimental Medicine and Biology, 2019, 1174, 1-33.	1.6	6
275	The Pathological G51D Mutation in Alpha-Synuclein Oligomers Confers Distinct Structural Attributes and Cellular Toxicity. Molecules, 2022, 27, 1293.	3.8	6
276	Exciton Coupling of Phenylalanine Reveals Conformational Changes of Cationic Peptides. ChemistrySelect, 2017, 2, 2476-2479.	1.5	5
277	Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering. RSC Chemical Biology, 2021, 2, 1232-1238.	4.1	5
278	DNA–Liposome Hybrid Carriers for Triggered Cargo Release. ACS Applied Bio Materials, 2022, 5, 3713-3721.	4.6	5
279	Dynamics of heteromolecular filament formation. Journal of Chemical Physics, 2016, 145, 175101.	3.0	4
280	Acceleration of α-synuclein aggregation. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 20-21.	3.0	4
281	Universality of filamentous aggregation phenomena. Physical Review E, 2019, 99, 062415.	2.1	4
282	Machine learning-aided protein identification from multidimensional signatures. Lab on A Chip, 2021, 21, 2922-2931.	6.0	4
283	Feedback control of protein aggregation. Journal of Chemical Physics, 2021, 155, 064102.	3.0	4
284	An Environmentally Sensitive Fluorescent Dye as a Multidimensional Probe of Amyloid Formation. Journal of Physical Chemistry B, 2016, 120, 2087-2094.	2.6	3
285	Liquid–Liquid Phaseâ€Separated Systems from Reversible Gel–Sol Transition of Protein Microgels (Adv.) T	j ETQ <u>q1</u> 1 0. 21.0	.78ჭ314 rg8T
286	Sequential storage and release of microdroplets. Microsystems and Nanoengineering, 2021, 7, 76.	7.0	3
287	Nanofluidic Traps by Two-Photon Fabrication for Extended Detection of Single Macromolecules and Colloids in Solution. ACS Applied Nano Materials, 2022, 5, 1995-2005.	5.0	3
288	Sonochemically-induced spectral shift as a probe of green fluorescent protein release from nano capsules. RSC Advances, 2014, 4, 10303-10309.	3.6	2

#	Article	IF	CITATIONS
289	Intra-chain organisation of hydrophobic residues controls inter-chain aggregation rates of amphiphilic polymers. Journal of Chemical Physics, 2017, 146, 135102.	3.0	2
290	Microfluidic Templating: Microfluidic Templating of Spatially Inhomogeneous Protein Microgels (Small 32/2020). Small, 2020, 16, 2070178.	10.0	2
291	Microchip Free-Flow Electrophoresis for Bioanalysis, Sensing, and Purification. Methods in Molecular Biology, 2022, 2394, 249-266.	0.9	1
292	Quantitative approaches for characterising fibrillar protein nanostructures. Materials Research Society Symposia Proceedings, 2010, 1274, 1.	0.1	0
293	Highly Non-linear Microfluidic Resistor Elements for Flow Rate-dependent Addressing of Microchannels. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13, .	1.0	0
294	Innenrücktitelbild: Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation (Angew. Chem. 50/2019). Angewandte Chemie, 2019, 131, 18463-18463.	2.0	0
295	Homage to Chris Dobson. Frontiers in Molecular Biosciences, 2019, 6, 137.	3.5	0
296	Chris Dobson (1949–2019). Nature Chemical Biology, 2020, 16, 105-105.	8.0	0