Jian Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2402011/publications.pdf

Version: 2024-02-01

		44069	51608
135	8,201	48	86
papers	citations	h-index	g-index
135	135	135	8395
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Unveiling the visible–light–driven photodegradation pathway and products toxicity of tetracycline in the system of Pt/BiVO4 nanosheets. Journal of Hazardous Materials, 2022, 424, 127596.	12.4	35
2	Facile synthesis of compact CdS–CuS heterostructures for optimal CO ₂ -to-syngas photoconversion. Inorganic Chemistry Frontiers, 2022, 9, 2150-2160.	6.0	7
3	Impacts of temperatures and phosphoric-acid modification to the physicochemical properties of biochar for excellent sulfadiazine adsorption. Biochar, 2022, 4, 1.	12.6	55
4	Two d ¹⁰ 2D Cathode-Ray Scintillation Coordination Polymers with High Efficiency and High-Voltage Stability. Inorganic Chemistry, 2022, 61, 8982-8986.	4.0	5
5	Photocatalytic hydrogen evolution on CdS–based composites derived from in situ carbonization of a sulfonic azo dye complex. Inorganic Chemistry Communication, 2021, 125, 108370.	3.9	2
6	Engineering cation defect-mediated Z-scheme photocatalysts for a highly efficient and stable photocatalytic hydrogen production. Journal of Materials Chemistry A, 2021, 9, 7759-7766.	10.3	54
7	Promoted photocarrier transfer and increased active sites for optimal CO ₂ -to-CH ₄ photoconversion <i>via</i> the modification of atomically dispersed transition metal ions in CdZnS nanocrystals. Journal of Materials Chemistry A, 2021, 9, 20350-20355.	10.3	7
8	Engineered nanoscale schwertmannites as Fenton–like catalysts for highly efficient degradation of nitrophenols. Applied Surface Science, 2021, 548, 149248.	6.1	23
9	Superior photo–Fenton activity towards chlortetracycline degradation over novel g–C3N4 nanosheets/schwertmannite nanocomposites with accelerated Fe(III)/Fe(II) cycling. Separation and Purification Technology, 2021, 279, 119760.	7.9	23
10	Barium-based scintillating MOFs for X-ray dosage detection with intrinsic energy resolution <i>via</i> luminescent multidentate naphthalene disulfonate moieties. Journal of Materials Chemistry C, 2021, 9, 5615-5620.	5 . 5	18
11	Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology. Journal of Hazardous Materials, 2020, 384, 121271.	12.4	180
12	Highly Efficient and Selective Removal of Lead Ions from Aqueous Solutions by Conjugated Microporous Polymers with Functionalized Heterogeneous Pores. Crystal Growth and Design, 2020, 20, 337-344.	3.0	22
13	AMnAs ₃ S ₆ (A = Cs, Rb): Phase-Matchable Infrared Nonlinear Optical Functional Motif [As ₃ S ₆] ^{3â€"} Obtained via Surfactantâ€"Thermal Method. ACS Applied Materials & Surfactantâ€"Thermal Method. ACS Applied Materials & Surfactantâ€"Thermal Method. ACS Applied Materials & Surfactantã€"Thermal Method. ACS Applied Method. ACS ACS Applied Method. ACS Applied Method. ACS	8.0	25
14	Aluminum Metal–Organic Framework–Silver Nanoparticle Composites for Catalytic Reduction of Nitrophenols. ACS Applied Nano Materials, 2020, 3, 11426-11433.	5.0	27
15	Microwave–assisted synthesis of nanoscale tungsten trioxide hydrate with excellent photocatalytic activity under visible irradiation. Inorganic Chemistry Communication, 2020, 120, 108147.	3.9	7
16	Anionic metal–organic framework as a unique turn-on fluorescent chemical sensor for ultra-sensitive detection of antibiotics. Chemical Communications, 2020, 56, 12403-12406.	4.1	65
17	Fluorination in enhancing photoactivated antibacterial activity of Ru(<scp>ii</scp>) complexes with photo-labile ligands. RSC Advances, 2020, 10, 25364-25369.	3.6	16
18	Heat-resistant Pb(<scp>ii</scp>)-based X-ray scintillating metalâ€"organic frameworks for sensitive dosage detection <i>via</i> an aggregation-induced luminescent chromophore. Dalton Transactions, 2020, 49, 7309-7314.	3.3	30

#	Article	IF	Citations
19	CdZnS nanorods with rich sulphur vacancies for highly efficient photocatalytic hydrogen production. Chemical Communications, 2020, 56, 7765-7768.	4.1	67
20	Localized surface plasmon resonance enhanced visible-light-driven CO ₂ photoreduction in Cu nanoparticle loaded ZnInS solid solutions. Nanoscale, 2020, 12, 15169-15174.	5.6	30
21	Fluorescent Metal–Organic Framework Constructed from Semi-rigid Ligand for the Sensitive Sensing of 2,4,6-Trinitrophenol. Crystal Growth and Design, 2020, 20, 1373-1377.	3.0	23
22	Visible-light-driven photocatalytic H ₂ evolution over CdZnS nanocrystal solid solutions: interplay of twin structures, sulfur vacancies and sacrificial agents. Journal of Materials Chemistry A, 2020, 8, 3882-3891.	10.3	121
23	Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nature Communications, 2020, $11,310$.	12.8	313
24	In situ immobilization of ultra-fine Ag NPs onto magnetic Ag@RF@Fe3O4 core-satellite nanocomposites for the rapid catalytic reduction of nitrophenols. Water Research, 2020, 179, 115882.	11.3	87
25	Phase controlled bismuth molybdates with enhanced photocatalytic degradation of tetracycline under visible irradiation. Inorganic Chemistry Communication, 2019, 108, 107522.	3.9	6
26	Fluorination on non-photolabile dppz ligands for improving Ru(<scp>ii</scp>) complex-based photoactivated chemotherapy. Dalton Transactions, 2019, 48, 12177-12185.	3.3	18
27	Preparation of carbon-supported CdS photocatalysts with high performance of dye photodegradation using cadmium-enriched Perilla frutescens biomass. Inorganic Chemistry Communication, 2019, 109, 107559.	3.9	25
28	One-Step Carbothermal Synthesis of Robust CdS@BPC Photocatalysts in the Presence of Biomass Porous Carbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 16835-16842.	6.7	31
29	Highly Stable Energetic Coordination Polymer Assembled with Co(II) and Tetrazole Derivatives. ACS Omega, 2019, 4, 15107-15111.	3.5	6
30	Aminal-Linked Covalent Organic Frameworks through Condensation of Secondary Amine with Aldehyde. Journal of the American Chemical Society, 2019, 141, 14981-14986.	13.7	114
31	Significant enhancement of cathode-ray scintillation for a conductive Bi-SMOF <i>via in situ</i> partial rare earth ion replacement. Journal of Materials Chemistry C, 2019, 7, 11099-11103.	5.5	27
32	Mixed phase nano–CdS supported on activated biomass carbon as efficient visible light–driven photocatalysts. Environmental Science and Pollution Research, 2019, 26, 31055-31061.	5. 3	9
33	Efficient X-ray scintillating lead(<scp>ii</scp>)-based MOFs derived from rigid luminescent naphthalene motifs. Dalton Transactions, 2019, 48, 1722-1731.	3.3	45
34	Controlled nitrite anion encapsulation and release in the molecular cavity of decamethylcucurbit[5]uril: solution and solid state studies. Inorganic Chemistry Frontiers, 2019, 6, 303-308.	6.0	3
35	Robust Microporous Porphyrin-Based Hydrogen-Bonded Organic Framework for Highly Selective Separation of C ₂ Hydrocarbons versus Methane. Crystal Growth and Design, 2019, 19, 4157-4161.	3.0	33
36	Controlled growth of ZnS/ZnO heterojunctions on porous biomass carbons <i>via</i> one-step carbothermal reduction enables visible-light-driven photocatalytic H ₂ production. Inorganic Chemistry Frontiers, 2019, 6, 2035-2042.	6.0	32

#	Article	IF	CITATIONS
37	Photocatalytic Degradation of Tetracycline Antibiotics over CdS/Nitrogen-Doped–Carbon Composites Derived from in Situ Carbonization of Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2019, 7, 10847-10854.	6.7	159
38	CdS nanoparticles alleviate photo-induced stress in <i>Geobacter</i> co-cultures. Environmental Science: Nano, 2019, 6, 1941-1949.	4.3	9
39	Novel Hierarchical Meso-Microporous Hydrogen-Bonded Organic Framework for Selective Separation of Acetylene and Ethylene versus Methane. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17823-17827.	8.0	56
40	Cocrystal of Sulfamethazine and p-Aminobenzoic Acid: Structural Establishment and Enhanced Antibacterial Properties. Crystal Growth and Design, 2019, 19, 2455-2460.	3.0	30
41	Calcium-based efficient cathode-ray scintillating metal–organic frameworks constructed from π-conjugated luminescent motifs. Chemical Communications, 2019, 55, 13816-13819.	4.1	15
42	Porous Graphitic Biomass Carbons as Sustainable Adsorption and Controlled Release Carriers for Atrazine Fixation. ACS Sustainable Chemistry and Engineering, 2019, 7, 20180-20189.	6.7	12
43	Chloromethyl-modified Ru(<scp>ii</scp>) complexes enabling large pH jumps at low concentrations through photoinduced hydrolysis. Chemical Science, 2019, 10, 9949-9953.	7.4	3
44	Two-Component Pharmaceutical Cocrystals Regulated by Supramolecular Synthons Comprising Primary N···Ĥ···O Interactions. Crystal Growth and Design, 2019, 19, 3-16.	3.0	24
45	Amino-functionalized biomass-derived porous carbons with enhanced aqueous adsorption affinity and sensitivity of sulfonamide antibiotics. Bioresource Technology, 2019, 277, 128-135.	9.6	87
46	An Ultraâ€Robust and Crystalline Redeemable Hydrogenâ€Bonded Organic Framework for Synergistic Chemoâ€Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 7691-7696.	13.8	303
47	Polycatenated 2D Hydrogen-Bonded Binary Supramolecular Organic Frameworks (SOFs) with Enhanced Gas Adsorption and Selectivity. Crystal Growth and Design, 2018, 18, 2555-2562.	3.0	49
48	Fluorescent Metal–Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater. Inorganic Chemistry, 2018, 57, 1060-1065.	4.0	270
49	An Ultraâ€Robust and Crystalline Redeemable Hydrogenâ€Bonded Organic Framework for Synergistic Chemoâ€Photodynamic Therapy. Angewandte Chemie, 2018, 130, 7817-7822.	2.0	85
50	Lotus-Leaf-Derived Activated-Carbon-Supported Nano-CdS as Energy-Efficient Photocatalysts under Visible Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 7871-7879.	6.7	81
51	Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You'xi County southeast China. Geoderma, 2018, 310, 99-106.	5.1	101
52	Assessment of tea garden soils at An'xi County in southeast China reveals a mild threat from contamination of potentially harmful elements. Royal Society Open Science, 2018, 5, 180050.	2.4	3
53	Reaction Pathway to the Only Openâ€Shell Transitionâ€Metal Keggin Ion without Organic Ligation. European Journal of Inorganic Chemistry, 2018, 2018, 4638-4642.	2.0	16
54	Synthesis of Metal–Organic Framework Materials by Reflux: A Faster and Greener Pathway to Achieve Super-Hydrophobicity and Photocatalytic Application. Crystal Growth and Design, 2018, 18, 6609-6616.	3.0	7

#	Article	IF	Citations
55	Microwave-induced decontamination of mercury polluted soils at low temperature assisted with granular activated carbon. Chemical Engineering Journal, 2018, 351, 1067-1075.	12.7	12
56	Morphological control of CdS@AC nanocomposites for enhanced photocatalytic degradation of tetracycline antibiotics under visible irradiation. Inorganic Chemistry Communication, 2018, 95, 134-138.	3.9	19
57	A highly stable and tightly packed 3D energetic coordination polymer assembled from nitrogen-rich tetrazole derivatives. New Journal of Chemistry, 2018, 42, 13927-13932.	2.8	17
58	MOF-808: A Metal–Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity at Neutral pH for Colorimetric Biosensing. Inorganic Chemistry, 2018, 57, 9096-9104.	4.0	258
59	Accelerating the start-up of the cathodic biofilm by adding acyl-homoserine lactone signaling molecules. Bioresource Technology, 2018, 266, 548-554.	9.6	30
60	Highly Anisotropic and Water Molecule-Dependent Proton Conductivity in a 2D Homochiral Copper(II) Metal–Organic Framework. Chemistry of Materials, 2017, 29, 2321-2331.	6.7	77
61	Ultrafine Silver Nanoparticles Supported on a Conjugated Microporous Polymer as High-Performance Nanocatalysts for Nitrophenol Reduction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5231-5236.	8.0	110
62	Structural and topological regulation on cobalt coordination polymers with mixed ligands. Inorganic Chemistry Communication, 2017, 85, 5-8.	3.9	4
63	Facile ultrafine copper seed-mediated approach for fabricating quasi-two-dimensional palladium-copper bimetallic trigonal hierarchical nanoframes. Nano Research, 2017, 10, 2810-2822.	10.4	5
64	Biosorption and extraction of europium by Bacillus thuringiensis strain. Inorganic Chemistry Communication, 2017, 75, 21-24.	3.9	26
65	Defect porous organic frameworks (dPOFs) as a platform for chiral organocatalysis. Journal of Catalysis, 2017, 355, 131-138.	6.2	26
66	Polyoxometalate-cucurbituril molecular solid as photocatalyst for dye degradation under visible light. Inorganic Chemistry Communication, 2017, 84, 164-167.	3.9	20
67	Coordination Polymers with Grinding-Size-Dependent Mechanoresponsive Luminescence Induced by π···π Stacking Interactions. European Journal of Inorganic Chemistry, 2017, 2017, 3811-3814.	2.0	14
68	Coordination Polymerization of Metal Azides and Powerful Nitrogen-Rich Ligand toward Primary Explosives with Excellent Energetic Performances. Chemistry of Materials, 2017, 29, 9725-9733.	6.7	92
69	Photodegradation of Rhodamine B over Biomass-Derived Activated Carbon Supported CdS Nanomaterials under Visible Irradiation. Frontiers in Chemistry, 2017, 5, 123.	3.6	45
70	Metal–organic frameworks assembled from flexible alicyclic carboxylate and bipyridyl ligands for sensing of nitroaromatic explosives. CrystEngComm, 2016, 18, 4530-4537.	2.6	29
71	lodine uptake and enhanced electrical conductivity in a porous coordination polymer based on cucurbit[6]uril. Inorganic Chemistry Frontiers, 2016, 3, 1393-1397.	6.0	41
72	Porous Organic Molecular Frameworks with Extrinsic Porosity: A Platform for Carbon Storage and Separation. Angewandte Chemie - International Edition, 2016, 55, 9474-9480.	13.8	123

#	Article	IF	Citations
73	Organische molekulare Gerýste mit extrinsischer Porositä eine Plattform fÃ⅓r die Kohlendioxidâ€Abscheidung und Speicherung. Angewandte Chemie, 2016, 128, 9624-9630.	2.0	32
74	Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nature Communications, 2016, 7, 11830.	12.8	92
75	Source apportionment of fluorine pollution in regional shallow groundwater at You'xi County southeast China. Chemosphere, 2016, 158, 50-55.	8.2	30
76	Sandwich-type Inorganic–Organic Hybrid Solids of Iso-polyvanadate Clusters and Decamethylcucurbit[5]uril. Crystal Growth and Design, 2016, 16, 1213-1217.	3.0	11
77	Cobalt coordination polymers regulated by in situ ligand transformation. CrystEngComm, 2016, 18, 2742-2747.	2.6	11
78	Control of Assembly of Dihydropyridyl and Pyridyl Molecules via Directed Hydrogen Bonding. Crystal Growth and Design, 2015, 15, 4219-4224.	3.0	10
79	Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chemical Society Reviews, 2014, 43, 5867-5895.	38.1	739
80	Electrochemical preparation of metal–organic framework films for fast detection of nitro explosives. Journal of Materials Chemistry A, 2014, 2, 19473-19478.	10.3	111
81	Cobalt-cluster-based coordination polymers with size-matching mixed ligands. CrystEngComm, 2014, 16, 1749.	2.6	18
82	Analysis of High and Selective Uptake of CO ₂ in an Oxamideâ€Containing {Cu ₂ (OOCR) ₄ }â€Based Metal–Organic Framework. Chemistry - A European Journal, 2014, 20, 7317-7324.	3.3	119
83	A Robust Binary Supramolecular Organic Framework (SOF) with High CO ₂ Adsorption and Selectivity. Journal of the American Chemical Society, 2014, 136, 12828-12831.	13.7	287
84	Monodispersed Ag Nanoparticles as Catalyst: Preparation Based on Crystalline Supramolecular Hybrid of Decamethylcucurbit[5]uril and Silver Ions. Inorganic Chemistry, 2014, 53, 5692-5697.	4.0	19
85	Cucurbituril: A promising organic building block for the design of coordination compounds and beyond. Coordination Chemistry Reviews, 2013, 257, 1334-1356.	18.8	191
86	Crystalline Hybrid Solid Materials of Palladium and Decamethylcucurbit[5]uril as Recoverable Precatalysts for Heck Crossâ€Coupling Reactions. Chemistry - A European Journal, 2013, 19, 15661-15668.	3.3	18
87	Photochromic hybrid materials of cucurbituril and polyoxometalates as photocatalysts under visible light. Chemical Communications, 2012, 48, 669-671.	4.1	209
88	Hydrogen and halogen bonding drive the orthogonal self-assembly of an organic framework possessing 2D channels. Chemical Communications, 2012, 48, 8207.	4.1	63
89	Entangled coordination polymers with mixed N- and O-donor organic linkers: A case of module-matching priority. Dalton Transactions, 2012, 41, 4146.	3.3	16
90	A Guestâ€Dependent Approach to Retain Permanent Pores in Flexible Metal–Organic Frameworks by Cation Exchange. Chemistry - A European Journal, 2012, 18, 7896-7902.	3.3	66

#	Article	IF	Citations
91	Palladium Nanoparticles Supported on Mixedâ€Linker Metal–Organic Frameworks as Highly Active Catalysts for Heck Reactions. ChemPlusChem, 2012, 77, 106-112.	2.8	88
92	New types of hybrid solids of tetravanadate polyanions and cucurbituril. Dalton Transactions, 2012, 41, 10080.	3.3	23
93	Designed 4,8-Connected Metal–Organic Frameworks Based on Tetrapodal Octacarboxylate Ligands. Crystal Growth and Design, 2011, 11, 4284-4287.	3.0	43
94	Homochiral Nickel Coordination Polymers Based on Salen(Ni) Metalloligands: Synthesis, Structure, and Catalytic Alkene Epoxidation. Inorganic Chemistry, 2011, 50, 2191-2198.	4.0	103
95	Porous Anionic, Cationic, and Neutral Metal-Carboxylate Frameworks Constructed from Flexible Tetrapodal Ligands: Syntheses, Structures, Ion-Exchanges, and Magnetic Properties. Inorganic Chemistry, 2011, 50, 2264-2271.	4.0	90
96	Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction. Catalysis Communications, 2011, 14, 27-31.	3.3	162
97	Interpenetrated metal–organic frameworks of self-catenated four-connected mok nets. Chemical Communications, 2011, 47, 5982.	4.1	66
98	Synthesis and characterization of two isomorphous cobalt(II), nickel(II) complexes with (63)(67,83)topologies. Inorganic Chemistry Communication, 2011, 14, 1237-1240.	3.9	9
99	Development of a polyoxometallate-based photocatalyst assembled with cucurbit[6]uril via hydrogen bonds for azo dyes degradation. Journal of Hazardous Materials, 2011, 186, 948-951.	12.4	73
100	An efficient and reusable silica/dendrimer supported platinum catalyst for electron transfer reactions. Journal of Colloid and Interface Science, 2011, 353, 149-155.	9.4	35
101	A Series of Lanthanide Metal–Organic Frameworks Based on Biphenylâ€3,4′,5â€tricarboxylate: Syntheses, Structures, Luminescence and Magnetic Properties. European Journal of Inorganic Chemistry, 2010, 2010, 3842-3849.	2.0	89
102	In situ synthesis of Ag nanoparticles in aminocalix[4] arene multilayers. Journal of Colloid and Interface Science, 2010, 341, 320-325.	9.4	18
103	Syntheses and characterizations of two new pillared-layer coordination polymers constructed from lanthanides and mixed O-donor ligands. Inorganic Chemistry Communication, 2010, 13, 388-391.	3.9	10
104	Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands. CrystEngComm, 2010, 12, 660-670.	2.6	126
105	Construction of a trigonal bipyramidal cage-based metal–organic framework with hydrophilic pore surface via flexible tetrapodal ligands. Chemical Communications, 2010, 46, 8439.	4.1	61
106	New Metalâ-'Organic Framework with Uninodal 4-Connected Topology Displaying Interpenetration, Self-Catenation, and Second-Order Nonlinear Optical Response. Crystal Growth and Design, 2010, 10, 1489-1491.	3.0	71
107	Progressive release of a palladium-pyridyl complex from a layer-by-layer multilayer and illustrative application to catalytic Suzuki coupling. Chemical Communications, 2010, 46, 7584.	4.1	34
108	pH-Dependent Syntheses and Crystal Structures of a Series of Organicâ^'Inorganic Hybrids Constructed from Keggin or Wellsâ^'Dawson Polyoxometalates and Silver Coordination Compounds. Inorganic Chemistry, 2010, 49, 736-744.	4.0	107

#	Article	IF	Citations
109	Construction of Train-Like Supramolecular Structures from Decamethylcucurbit[5]uril and Iso- or Hetero-Keggin-Type Polyoxotungstates. Crystal Growth and Design, 2010, 10, 1966-1970.	3.0	37
110	Coordination polymers of 1,4-piperazinedipropionic acid: domination by flexibility, coordination, and/or configuration?. CrystEngComm, 2010, 12, 3780.	2.6	8
111	Preparation and characterization of lanthanide–azo-dye coordination polymers and polymer thin films via layer-by-layer depositions. Dalton Transactions, 2010, 39, 10967.	3.3	7
112	Syntheses and structures of two noncentro symmetric inorganic–organic composite materials based on metal sulfate and 4,4′-bipyridine (M=Ni, Fe). Inorganic Chemistry Communication, 2009, 12, 181-183.	3.9	6
113	Observation of the least stable conformer of 1,4-cyclohexanedicarboxylic anions in a samarium coordination architecture. CrystEngComm, 2009, 11, 2248.	2.6	16
114	Anion-Assisted Structural Variation of Cadmium Coordination Polymers: From 2D → 3D Inclined Polycatenation to 2D → 3D Polythreading. Crystal Growth and Design, 2009, 9, 3003-3005.	3.0	86
115	Conformation control of a flexible 1,4-phenylenediacetate ligand in coordination complexes: a rigidity-modulated strategy. CrystEngComm, 2009, 11, 583-588.	2.6	63
116	Systematic investigation on the coordination chemistry of a sulfonated monoazo dye: Ligand-dominated d- and f-block derivatives. Dalton Transactions, 2009, , 1944.	3.3	14
117	Photocatalytic properties of polyoxometalate–thionine composite films immobilized onto microspheres under sunlight irradiation. Journal of Materials Chemistry, 2009, 19, 4157.	6.7	37
118	Supramolecular assembly from decavanadate anion and decamethylcucurbit[5]uril. Dalton Transactions, 2009, , 1101-1103.	3.3	30
119	Lanthanide Coordination Polymers Constructed from Infinite Rodâ€Shaped Secondary Building Units and Flexible Ligands. Chemistry - an Asian Journal, 2008, 3, 542-547.	3.3	45
120	Syntheses, Structures, Near-Infrared, and Visible Luminescence of Lanthanide-Organic Frameworks with Flexible Macrocyclic Polyamine Ligands. Crystal Growth and Design, 2008, 8, 1897-1901.	3.0	86
121	Copper 5-sulfoisophthalato quasi-planar squares in coordination polymers modulated by alkaline-earth metals: a way to molecular squares?. CrystEngComm, 2008, 10, 784.	2.6	42
122	Pentadecatungstate with Dinuclear Cerium(III) Unit: Synthesis, Crystal Structure and Properties. Inorganic Chemistry, 2008, 47, 5612-5615.	4.0	31
123	Inorganic–Organic Hybrid with 3D Supramolecular Channel Assembled through C–H···O Interactions Based on the Decavanadate. Chemistry Letters, 2007, 36, 356-357.	1.3	17
124	Multilayer films of single-component and charged tetraaminocalix[4] arenes based on hydrogen bonding. Chemical Communications, 2007, , 1813.	4.1	13
125	Two novel grid networks based on Keggin-type polyoxometalate clusters assembled through weak Cuâç O interactions. Inorganic Chemistry Communication, 2007, 10, 551-554.	3.9	28
126	A new lamellar solid trapping water clusters and intercalated organosulfonate guests. Inorganic Chemistry Communication, 2007, 10, 614-617.	3.9	8

#	Article	IF	CITATIONS
127	Two luminescent frameworks constructed from lead(II) salts with carboxylate ligands containing dinuclear lead(II) units. Journal of Solid State Chemistry, 2007, 180, 2386-2392.	2.9	34
128	Hydroxyl-directed dinitration of carboxylate ligands mediated by lead and nickel nitrates and preparation of Pb/Ni heterometallic complexes under hydrothermal conditions. Chemical Communications, 2006, , 1938.	4.1	37
129	Novel Two-Dimensional Network Constructed from Polyoxomolybdate Chains Linked through Copperâ^'Organonitrogen Coordination Polymer Chains:  Hydrothermal Synthesis and Structure of [H2bpy][Cu(4,4â€⁻-bpy)]2[HPCuMo11O39]. Crystal Growth and Design, 2005, 5, 257-260.	3.0	165
130	A Novel Pillar-Layered Organicâ^'Inorganic Hybrid Based on Lanthanide Polymer and Polyomolybdate Clusters:  New Opportunity toward the Design and Synthesis of Porous Framework. Crystal Growth and Design, 2005, 5, 65-67.	3.0	146
131	Hydrothermal synthesis and crystal structure of a novel two-dimensional organic–inorganic hybrid copper molybdate with mixed organodiamine and dicarboxyl ligands. Journal of Solid State Chemistry, 2004, 177, 1771-1775.	2.9	14
132	The first vanadate oxide phase containing two types of modified metal centers: {MnII(2,2′-bpy)}[{WO2(2,2′-bpy)}(VVO3)(VV2O6)] (2,2′-bpy=2,2′-bipyridine). Inorganica Chimica Ac 357, 1193-1197.	ta ;.2 004,	8
133	Self-assembly of polyoxometalate clusters into a 3-D heterometallic framework via covalent bonding: synthesis, structure and characterization of Na4[Nd8(dipic)12(H2O)9][Mo8O26]·8H2O. Journal of Solid State Chemistry, 2004, 177, 4372-4376.	2.9	17
134	A Novel Three-Dimensional Network Constructed from Tetramolybdate Clusters Linked via Two Types of Copper Complex Fragments: Synthesis, Characterization, and Magnetic Behavior of [{Cull(2,2â€~-bpy)}{Cull(IN)2}{Mo4O12(OH)2}]. Inorganic Chemistry, 2003, 42, 6956-6958.	4.0	96
135	Ce-doped Bi based catalysts for highly efficient electroreduction of CO ₂ to formate. Journal of Materials Chemistry C, O, , .	5.5	11