

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2401971/publications.pdf Version: 2024-02-01

\\/FI\\/FI

#	Article	IF	CITATIONS
1	Copper-catalyzed direct oxysulfonylation of alkenes with dioxygen and sulfonylhydrazides leading to β-ketosulfones. Chemical Communications, 2013, 49, 10239.	2.2	252
2	Metal-Free C(sp ²)–H/N–H Cross-Dehydrogenative Coupling of Quinoxalinones with Aliphatic Amines under Visible-Light Photoredox Catalysis. Organic Letters, 2018, 20, 7125-7130.	2.4	213
3	Direct and metal-free arylsulfonylation of alkynes with sulfonylhydrazides for the construction of 3-sulfonated coumarins. Chemical Communications, 2015, 51, 768-771.	2.2	181
4	Catalytic and Direct Oxyphosphorylation of Alkenes with Dioxygen and Hâ€Phosphonates Leading to βâ€Ketophosphonates. Angewandte Chemie - International Edition, 2011, 50, 9097-9099.	7.2	179
5	Catalyst-free direct arylsulfonylation of N-arylacrylamides with sulfinic acids: a convenient and efficient route to sulfonated oxindoles. Green Chemistry, 2014, 16, 2988-2991.	4.6	153
6	Metal-Free Visible-Light-Induced C–H/C–H Cross-Dehydrogenative-Coupling of Quinoxalin-2(H)-ones with Simple Ethers. ACS Sustainable Chemistry and Engineering, 2018, 6, 17252-17257.	3.2	147
7	Visible-light-enabled spirocyclization of alkynes leading to 3-sulfonyl and 3-sulfenyl azaspiro[4,5]trienones. Green Chemistry, 2017, 19, 5608-5613.	4.6	145
8	Catalyst-free visible-light-initiated oxidative coupling of aryldiazo sulfones with thiols leading to unsymmetrical sulfoxides in air. Green Chemistry, 2019, 21, 1609-1613.	4.6	145
9	Silver-Mediated Radical Cyclization of Alkynoates and α-Keto Acids Leading to Coumarins via Cascade Double C–C Bond Formation. Journal of Organic Chemistry, 2015, 80, 1550-1556.	1.7	134
10	Metal-Free Oxidative Spirocyclization of Alkynes with Sulfonylhydrazides Leading to 3-Sulfonated Azaspiro[4,5]trienones. Journal of Organic Chemistry, 2015, 80, 4966-4972.	1.7	125
11	Visible-light initiated direct oxysulfonylation of alkenes with sulfinic acids leading to β-ketosulfones. Green Chemistry, 2016, 18, 5630-5634.	4.6	125
12	Metal-Free Direct Trifluoromethylation of Activated Alkenes with Langlois' Reagent Leading to CF3-Containing Oxindoles. Journal of Organic Chemistry, 2014, 79, 4225-4230.	1.7	123
13	Visible-light-induced selective synthesis of sulfoxides from alkenes and thiols using air as the oxidant. Green Chemistry, 2017, 19, 3520-3524.	4.6	116
14	Visible light-induced C–H sulfenylation using sulfinic acids. Green Chemistry, 2017, 19, 4785-4791.	4.6	112
15	Visible-light-induced three-component reaction of quinoxalin-2(1H)-ones, alkenes and CF3SO2Na leading to 3-trifluoroalkylated quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2021, 32, 258-262.	4.8	106
16	Visible-light-promoted acridine red catalyzed aerobic oxidative decarboxylative acylation of α-oxo-carboxylic acids with quinoxalin-2(1 <i>H</i>)-ones. Organic Chemistry Frontiers, 2020, 7, 492-498.	2.3	102
17	Copper-catalyzed highly selective direct hydrosulfonylation of alkynes with arylsulfinic acids leading to vinyl sulfones. Organic and Biomolecular Chemistry, 2014, 12, 1861-1864.	1.5	97
18	Visible-light-initiated 4CzIPN catalyzed multi-component tandem reactions to assemble sulfonated quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2022, 33, 1479-1482.	4.8	95

#	Article	IF	CITATIONS
19	Metal-free visible-light-induced oxidative cyclization reaction of 1,6-enynes and arylsulfinic acids leading to sulfonylated benzofurans. Chinese Chemical Letters, 2020, 31, 67-70.	4.8	88
20	Metalâ€Free Direct Construction of Sulfonamides <i>via</i> lodine―Mediated Coupling Reaction of Sodium Sulfinates and Amines at Room Temperature. Advanced Synthesis and Catalysis, 2015, 357, 987-992.	2.1	85
21	Molecular Iodine-Mediated Difunctionalization of Alkenes with Nitriles and Thiols Leading to β-Acetamido Sulfides. Journal of Organic Chemistry, 2016, 81, 2252-2260.	1.7	85
22	Metal- and photocatalyst-free visible-light-promoted regioselective selenylation of coumarin derivatives <i>via</i> oxidation-induced C–H functionalization. Organic Chemistry Frontiers, 2018, 5, 2974-2979.	2.3	85
23	Visible-light-enabled oxyazidation of alkenes leading to α-azidoketones in air. Green Chemistry, 2018, 20, 3197-3202.	4.6	83
24	Direct difunctionalization of alkynes with sulfinic acids and molecular iodine: a simple and convenient approach to (E)-Î ² -iodovinyl sulfones. RSC Advances, 2015, 5, 4416-4419.	1.7	82
25	Visible-Light-Enabled Construction of Thiocarbamates from Isocyanides, Thiols, and Water at Room Temperature. Organic Letters, 2018, 20, 5291-5295.	2.4	80
26	Metal-free Oxidative Coupling of Aromatic Alkenes with Thiols Leading to (<i>E</i>)-Vinyl Sulfones. Journal of Organic Chemistry, 2017, 82, 6857-6864.	1.7	79
27	lron-catalyzed direct difunctionalization of alkenes with dioxygen and sulfinic acids: a highly efficient and green approach to β-ketosulfones. Organic and Biomolecular Chemistry, 2014, 12, 7678-7681.	1.5	77
28	Metal-Free Iodine-Catalyzed Direct Arylthiation of Substituted Anilines with Thiols. Journal of Organic Chemistry, 2015, 80, 6083-6092.	1.7	76
29	Metal-Free Trifluoroalkylation of Quinoxalin-2(1 <i>H</i>)-ones with Unactivated Alkenes and Langlois' Reagent. Journal of Organic Chemistry, 2020, 85, 6888-6896.	1.7	72
30	Visible-light-mediated metal-free decarboxylative acylations of isocyanides with α-oxocarboxylic acids and water leading to α-ketoamides. Green Chemistry, 2019, 21, 6051-6055.	4.6	71
31	Copper-Catalyzed Selenylation of Imidazo[1,2- <i>a</i>]pyridines with Selenium Powder via a Radical Pathway. Journal of Organic Chemistry, 2017, 82, 2906-2913.	1.7	69
32	Metal-free molecular iodine-catalyzed direct sulfonylation of pyrazolones with sodium sulfinates leading to sulfonated pyrazoles at room temperature. Organic Chemistry Frontiers, 2017, 4, 26-30.	2.3	69
33	Direct C-H 3-Arylation of Quinoxalin-2(<i>H</i>)-ones with Aryl Diazonium Salts under Visible-Light Irradiation. Chinese Journal of Organic Chemistry, 2018, 38, 3189.	0.6	65
34	Catalyst-free direct decarboxylative coupling of α-keto acids with thiols: a facile access to thioesters. Organic and Biomolecular Chemistry, 2015, 13, 7323-7330.	1.5	64
35	Copperâ€Catalyzed Regioselective Cleavage of Câ^'X and Câ^'H Bonds: A Strategy for Sulfur Dioxide Fixation. Chemistry - A European Journal, 2018, 24, 4423-4427.	1.7	60
36	Silver-catalyzed direct spirocyclization of alkynes with thiophenols: a simple and facile approach to 3-thioazaspiro[4,5]trienones. RSC Advances, 2015, 5, 84657-84661.	1.7	57

#	Article	lF	CITATIONS
37	Metal-free iodine-catalyzed direct cross-dehydrogenative coupling (CDC) between pyrazoles and thiols. Organic Chemistry Frontiers, 2016, 3, 1457-1461.	2.3	54
38	Ruthenium(<scp>ii</scp>)-catalyzed olefination <i>via</i> carbonyl reductive cross-coupling. Chemical Science, 2017, 8, 8193-8197.	3.7	52
39	Metal-free I2O5-mediated oxidative synthesis of sulfonylated benzofurans through cyclization reaction of 1,6-enynes and arylsulfonylhydrazides. Tetrahedron Letters, 2019, 60, 1845-1848.	0.7	52
40	Photocatalystâ€Free Visible Lightâ€Induced Synthesis of βâ€Oxo Sulfones via Oxysulfonylation of Alkenes with Arylazo Sulfones and Dioxygen in Air. Advanced Synthesis and Catalysis, 2019, 361, 5277-5282.	2.1	48
41	DMSO-promoted regioselective synthesis of sulfenylated pyrazoles via a radical pathway. Organic Chemistry Frontiers, 2017, 4, 1367-1371.	2.3	47
42	Direct difunctionalization of alkenes with sulfinic acids and NBS leading to β-bromo sulfones. Tetrahedron Letters, 2015, 56, 1808-1811.	0.7	45
43	Resveratroloside Alleviates Postprandial Hyperglycemia in Diabetic Mice by Competitively Inhibiting α-Glucosidase. Journal of Agricultural and Food Chemistry, 2019, 67, 2886-2893.	2.4	45
44	lodine-catalyzed Direct Thiolation of Indoles with Thiols Leading to 3-Thioindoles Using Air as the Oxidant. Catalysis Letters, 2016, 146, 1743-1748.	1.4	42
45	Metal-Free Catalytic Synthesis of Thiocarbamates Using Sodium Sulfinates as the Sulfur Source. Journal of Organic Chemistry, 2019, 84, 2976-2983.	1.7	41
46	Direct coupling of haloquinolines and sulfonyl chlorides leading to sulfonylated quinolines in water. Tetrahedron Letters, 2019, 60, 214-218.	0.7	41
47	Metal-free direct construction of sulfenylated pyrazoles via the NaOH promoted sulfenylation of pyrazolones with aryl thiols. RSC Advances, 2016, 6, 51830-51833.	1.7	37
48	Copper-Catalyzed Three-Component Reaction of Alkynes, TMSN ₃ , and Ethers: Regiocontrollable Synthesis of N ¹ - and N ² -Oxyalkylated 1,2,3-Triazoles. Organic Letters, 2019, 21, 7218-7222.	2.4	37
49	Catalyst- and additive-free selective sulfonylation/cyclization of 1,6-enynes with arylazo sulfones leading to sulfonylated Î ³ -butyrolactams. Chinese Chemical Letters, 2021, 32, 136-139.	4.8	37
50	Recent advances in the application of sulfinic acids for the construction of sulfur-containing compounds. Chinese Chemical Letters, 2022, 33, 97-114.	4.8	37
51	Copper-catalyzed cyanoalkylarylation of activated alkenes with AIBN: a convenient and efficient approach to cyano-containing oxindoles. RSC Advances, 2014, 4, 48535-48538.	1.7	36
52	Metal-free direct difunctionalization of alkenes with I2O5 and P(O)–H compounds leading to β-iodophosphates. Organic Chemistry Frontiers, 2015, 2, 1356-1360.	2.3	34
53	Metal-free I ₂ O ₅ -mediated direct construction of sulfonamides from thiols and amines. Organic and Biomolecular Chemistry, 2017, 15, 4789-4793.	1.5	34
54	Copper-catalyzed aerobic oxidative coupling of ketones with P(O)–H compounds leading to β-ketophosphine oxides. Organic Chemistry Frontiers, 2017, 4, 1385-1389.	2.3	33

#	Article	IF	CITATIONS
55	Copperâ€Catalyzed Direct Oxyphosphorylation of Enamides with P(O)â€H Compounds and Dioxygen. Chinese Journal of Chemistry, 2017, 35, 1378-1382.	2.6	30
56	Catalyst-free direct difunctionalization of alkenes with H-phosphine oxides and dioxygen: a facile and green approach to Î ² -hydroxyphosphine oxides. Tetrahedron Letters, 2016, 57, 2642-2646.	0.7	29
57	TEMPO-Catalyzed Aminophosphinoylation of Ethers via Tandem C(sp ³)–H and C(sp ³)–O Bond Cleavage. Organic Letters, 2019, 21, 3332-3336.	2.4	28
58	Visible-light-driven multicomponent reactions to access <i>S</i> -alkyl phosphorothioates using elemental sulfur as the sulfur source. Green Chemistry, 2022, 24, 4915-4920.	4.6	28
59	A copper-catalyzed cascade reaction of o-bromoarylisothiocyanates with isocyanides leading to benzo[d]imidazo[5,1-b]thiazoles under ligand-free conditions. Organic Chemistry Frontiers, 2016, 3, 556-560.	2.3	26
60	Copper-catalyzed direct oxyphosphorylation of alkynes with H-phosphine oxides and dioxygen: A convenient approach to l² -ketophosphine oxides. Synthetic Communications, 2016, 46, 1377-1385.	1.1	25
61	Silver-mediated aminophosphinoylation of propargyl alcohols with aromatic amines and H-phosphine oxides leading to α-aminophosphine oxides. Chinese Chemical Letters, 2020, 31, 373-376.	4.8	25
62	Electrochemical-Induced Transfer Hydrogenation of Imidazopyridines with Secondary Amine as Hydrogen Donor. Organic Letters, 2020, 22, 8824-8828.	2.4	25
63	Metal-free visible-light-induced aerobic oxidation of α-diazoesters leading to α-ketoesters in air. Organic Chemistry Frontiers, 2021, 8, 1970-1975.	2.3	25
64	Photocatalyst-free visible-light-mediated three-component reaction of α-diazoesters, cyclic ethers and NaSCN to access organic thiocyanates. Chinese Chemical Letters, 2023, 34, 107599.	4.8	24
65	Metal-free electrochemical synthesis of α-ketoamides <i>via</i> decarboxylative coupling of α-keto acids with isocyanides and water. Organic Chemistry Frontiers, 2021, 8, 6508-6514.	2.3	22
66	Metalâ€Free Multiâ€Component Sulfur Dioxide Insertion Reaction Leading to Quinoxalinâ€2â€Oneâ€Containing Vinyl Sulfones under Visibleâ€Light Photoredox Catalysis. Advanced Synthesis and Catalysis, 2021, 363, 5122-5128.	2.1	20
67	Copper-catalyzed direct hydroxyphosphorylation of electron-deficient alkenes with H-phosphine oxides and dioxygen. Tetrahedron Letters, 2017, 58, 2058-2061.	0.7	19
68	Copper catalyzed one-pot synthesis of β-ketophosphine oxides from ketones and H-phosphine oxides. Tetrahedron Letters, 2017, 58, 2417-2420.	0.7	18
69	Visible-light-promoted aerobic oxidative synthesis of β-ketosulfones under photocatalyst-free conditions. Tetrahedron Letters, 2020, 61, 151335.	0.7	18
70	Transition-metal-free PhI(OAc) ₂ -promoted highly selective hydroboration of terminal alkynes under air. RSC Advances, 2017, 7, 26070-26073.	1.7	17
71	Metal-free visible-light-induced multi-component reactions of α-diazoesters leading to <i>S</i> -alkyl dithiocarbamates. Organic Chemistry Frontiers, 2022, 9, 3486-3492.	2.3	17
72	I2O5/DBU mediated direct α-phosphoryloxylation of ketones with H-phosphonates leading to α-hydroxyketone phosphates. Tetrahedron, 2015, 71, 6901-6906.	1.0	16

#	Article	IF	CITATIONS
73	Selective assembly of <i>N</i> 1- and <i>N</i> 2-alkylated 1,2,3-triazoles <i>via</i> copper-catalyzed decarboxylative cycloaddition of alkynyl carboxylic acids with ethers and azidotrimethylsilane. Organic Chemistry Frontiers, 2019, 6, 3983-3988.	2.3	16
74	Direct cross-coupling of aryl alkynyliodines with arylsulfinic acids leading to alkynyl sulfones under catalyst-free conditions. Tetrahedron Letters, 2017, 58, 4799-4802.	0.7	15
75	Metal-Free Direct Hydrosulfonylation of Azodicarboxylates with Sulfinic Acids Leading to Sulfonylhydrazine Derivatives. Synthetic Communications, 2015, 45, 1574-1584.	1.1	14
76	Direct Iodosulfonylation of Alkylynones with Sulfonylhydrazides and Iodine Pentoxide Leading to Multisubstituted α,β-Enones. Synlett, 2018, 29, 830-834.	1.0	14
77	Transition-metal-free KI-catalyzed regioselective sulfenylation of 4-anilinocoumarins using Bunte salts. Organic and Biomolecular Chemistry, 2018, 16, 8015-8019.	1.5	14
78	Catalyst-free synthesis of α-thioacrylic acids <i>via</i> cascade thiolation and 1,4-aryl migration of aryl alkynoates at room temperature. Organic and Biomolecular Chemistry, 2018, 16, 8379-8383.	1.5	14
79	Elemental sulfur as the "S―source: visible-light-mediated four-component reactions leading to thiocyanates. Organic Chemistry Frontiers, 2022, 9, 3565-3570.	2.3	11
80	Direct synthesis of α-hydroxyketone phosphates from terminal alkynes and H-phosphine oxides in the presence of PhI(OAc)2 and H2O. Chinese Chemical Letters, 2016, 27, 1691-1695.	4.8	7
81	Direct decarboxylative C H 3-arylation of quinoxalin-2(H)-ones with aryl acyl peroxides leading to 3-arylquinoxalin-2(1H)-ones. Tetrahedron Letters, 2020, 61, 152559.	0.7	7
82	Recent Advances in Arylations and Sulfonylations of Arylazo Sulfones. Chinese Journal of Organic Chemistry, 2021, 41, 4639.	0.6	5
83	Electrochemicalâ€Induced C(sp 3)â^'H Dehydrogenative Trimerization of Pyrazolones to Tripyrazolones. European Journal of Organic Chemistry, 2021, 2021, 5491-5496.	1.2	4