Yu-Feng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2401848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transition Metal-Free α-Csp ³ -H Methylenation of Ketones to Form C╀ Bond Using Dimethyl Sulfoxide as Carbon Source. Journal of Organic Chemistry, 2017, 82, 7159-7164.	3.2	71
2	Transition-Metal-Free TBAI-Facilitated Addition–Cyclization of <i>N</i> -Methyl- <i>N</i> -arylacrylamides with Arylaldehydes or Benzenesulfonohydrazides: Access to Carbonyl- and Sulfone-Containing <i>N</i> -Methyloxindoles. Journal of Organic Chemistry, 2016, 81, 5181-5189.	3.2	59
3	Transition metal-free C(sp ³)–H bond coupling among three methyl groups. Chemical Communications, 2017, 53, 5346-5349.	4.1	57
4	Copper atalyzed Aerobic Oxidative Cyclization of Anilines, Aryl Methyl Ketones and DMSO: Efficient Assembly of 2â€Arylquinolines. Advanced Synthesis and Catalysis, 2018, 360, 2691-2695.	4.3	51
5	Self-assembly of Keggin-type U(<scp>vi</scp>)-containing tungstophosphates with a sandwich structure: an efficient catalyst for the synthesis of sulfonyl pyrazoles. Inorganic Chemistry Frontiers, 2021, 8, 4650-4656.	6.0	46
6	Disulfides as Sulfonylating Precursors for the Synthesis of Sulfoneâ€Containing Oxindoles. Advanced Synthesis and Catalysis, 2016, 358, 2976-2983.	4.3	37
7	H3PMo12O40-catalyzed coupling of diarylmethanols with epoxides/diols/aldehydes toward polyaryl-substituted aldehydes. Chinese Chemical Letters, 2020, 31, 3233-3236.	9.0	37
8	Transition-Metal-Free Oxidative Decarboxylative Cross Coupling of α,β-Unsaturated Carboxylic Acids with Cyclic Ethers under Air Conditions: Mild Synthesis of α-Oxyalkyl Ketones. Journal of Organic Chemistry, 2017, 82, 2965-2971.	3.2	34
9	[Co ₃ (μ ₃ -O)]-Based Metal–Organic Frameworks as Advanced Anode Materials in K- and Na-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46902-46908.	8.0	34
10	H4SiW12O40-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides: An efficient synthesis of 3,4-disubstituted 1H-pyrazoles. Chinese Chemical Letters, 2022, 33, 1483-1487.	9.0	33
11	Transition-Metal-Free Synthesis of Carbonyl-Containing Oxindoles from <i>N</i> -Arylacrylamides and α-Diketones via TBHP- or Oxone-Mediated Oxidative Cleavage of C(sp ²)–C(sp ²) Bonds. Journal of Organic Chemistry, 2015, 80, 10777-10786.	3.2	31
12	Direct Assembly of Polysubstituted Furans via C(<i>sp</i> ³)â^'H Bond Functionalization by Using Dimethyl Sulfoxide as a Dual Synthon. Advanced Synthesis and Catalysis, 2019, 361, 1084-1091.	4.3	31
13	Synthesis of symmetrical / unsymmetrical thiosulfonates through the disproportionate coupling reaction of sulfonyl hydrazide mediated by phosphomolybdic acid. Tetrahedron Letters, 2021, 65, 152757.	1.4	29
14	Regio―and Stereoselective Synthesis of (<i>Z</i>)â€ <scp>3‥lidenephthalides</scp> <i>via</i> <scp>H₃PMo₁₂O_{40Cyclization of <scp>2â€Acylbenzoic</scp> Acids with Benzylic Alcohols. Chinese Journal of Chemistry, 2021, 39, 3017-3022.}</scp>	sub>ĝ€Cat 4.9	talyzed
15	Copper-Containing Polyoxometalate-Based Metal–Organic Frameworks as Heterogeneous Catalysts for the Synthesis of N-Heterocycles. Inorganic Chemistry, 2022, 61, 6934-6942.	4.0	29
16	K 2 S 2 O 8 -mediated nitration of alkenes with NaNO 2 and 2,2,6,6-tetramethylpiperidine-1-oxyl: stereoselective synthesis of (E)-nitroalkenes. Tetrahedron Letters, 2016, 57, 80-84.	1.4	28
17	Dimethyl Sulfoxide Oxygen Donorâ€Based Annulation of Ketones and Ammonium Persulfate: Regioselective Synthesis of 2,4â€disubstituted Oxazoles. Advanced Synthesis and Catalysis, 2019, 361, 1632-1640.	4.3	26
18	Metal-free direct cyanoisopropylation/arylation of N-arylacrylamides or N-alkyl-N-(arylsulfonyl)acrylamides with AIBN: a simple and mild approach to cyano-containing oxindoles. RSC Advances, 2015, 5, 56438-56443.	3.6	24

Yu-Feng Liu

#	Article	IF	CITATIONS
19	Self-assembly of a new 3D platelike ternary-oxo-cluster: An efficient catalyst for the synthesis of pyrazoles. Chinese Chemical Letters, 2022, 33, 354-357.	9.0	23
20	Effect of Na(I)-H2O clusters on self-assembly of sandwich-type U(VI)-containing silicotungstates and the efficient catalytic activity for the synthesis of substituted phenylsulfonyl-1H-pyrazoles. Tungsten, 2022, 4, 149-157.	4.8	21
21	Two Dawson-type U(VI)-containing selenotungstates with sandwich structure and its highâ€efficiency catalysis for pyrazoles. Chinese Chemical Letters, 2022, 33, 3899-3902.	9.0	15
22	Copper-catalyzed aerobic oxidative C–C bond cleavage of simple ketones for the synthesis of amides. Organic and Biomolecular Chemistry, 2020, 18, 6958-6964.	2.8	14
23	Two novel telluroniobates with efficient catalytic activity for the imidation/amidation reaction. Chemical Communications, 2022, 58, 1167-1170.	4.1	11
24	Synthesis of 3,3′â€Disubstituted Isobenzofuranâ€1(3 <i>H</i>)â€Ones via Cs _{0.5} H _{2.5} PW ₁₂ O ₄₀ â€Catalyzed Difunctionalization of Carbonyls. Advanced Synthesis and Catalysis, 2022, 364, 1460-1464.	4.3	11
25	Synthesis of 3â€Nitroisoxazoles via Copper Acetateâ€Mediated Reaction of Benzaldehydes with Nitromethane. Advanced Synthesis and Catalysis, 2019, 361, 3420-3429.	4.3	10
26	Heteropolyacid ionic liquid heterogeneously catalyzed synthesis of isochromans <i>via</i> oxa-Pictet–Spengler cyclization in dimethyl carbonate. RSC Advances, 2021, 11, 10610-10614.	3.6	10
27	Two Câ- ${f C}$ Bond Participation in Annulation to Pyridines Based on DMF as the Nonadjacent N and C Atom Donors. Journal of Organic Chemistry, 2021, 86, 13446-13453.	3.2	9
28	The largest Se-4f cluster incorporated polyoxometalate with high Lewis acid–base catalytic activity. Chemical Communications, 2022, 58, 5737-5740.	4.1	9
29	Efficient Synthesis of 3,6â€Dihydroâ€2Hâ€pyrans via [3+2+1] Annulation Based on the Heteroatomâ€free Triâ€atom Donor. Advanced Synthesis and Catalysis, 2019, 361, 5392-5399.	4.3	8
30	Three rare-earth incorporating 6-peroxotantalo-4-selenates and catalytic activities for imidation reaction. Dalton Transactions, 2022, 51, 9988-9993.	3.3	7
31	2D network structure of zinc(II) complex: A new easily accessible and efficient catalyst for the synthesis of pyrazoles. Applied Organometallic Chemistry, 2021, 35, e6379.	3.5	6
32	Copper(I)â€Catalyzed αâ€Acryloyloxylation of Ketones with α,βâ€Unsaturated Carboxylic Acids To Form αâ€Acryloyloxy Ketones. European Journal of Organic Chemistry, 2017, 2017, 734-740.	2.4	5
33	Regioselective Synthetic Approach to Higher Alkenes from Lower Alkenes with Sulfoxides in the Fe ³⁺ /H ₂ O ₂ System <i>via</i> Direct Alkylation or Arylation of the Csp ² –H Bond on the Câ•C Bond of Alkenes. Journal of Organic Chemistry, 2022, 87, 7022-7032.	3.2	4