Yifei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2401409/publications.pdf Version: 2024-02-01

VIEEL ZHANC

#	Article	lF	CITATIONS
1	One-Pot Synthesis of Protein-Embedded Metal–Organic Frameworks with Enhanced Biological Activities. Nano Letters, 2014, 14, 5761-5765.	4.5	754
2	Enhanced Activity of Immobilized or Chemically Modified Enzymes. ACS Catalysis, 2015, 5, 4503-4513.	5.5	348
3	Proximity does not contribute to activity enhancement in the glucose oxidase–horseradish peroxidase cascade. Nature Communications, 2016, 7, 13982.	5.8	287
4	Spatial co-localization of multi-enzymes by inorganic nanocrystal–protein complexes. Chemical Communications, 2014, 50, 12465-12468.	2.2	159
5	Toward Rational Design of High-efficiency Enzyme Cascades. ACS Catalysis, 2017, 7, 6018-6027.	5.5	156
6	Rapid Detection of Phenol Using a Membrane Containing Laccase Nanoflowers. Chemistry - an Asian Journal, 2013, 8, 2358-2360.	1.7	126
7	Increasing Enzyme Cascade Throughput by pH-Engineering the Microenvironment of Individual Enzymes. ACS Catalysis, 2017, 7, 2047-2051.	5.5	100
8	Ink-jet printing an optimal multi-enzyme system. Chemical Communications, 2014, 50, 12919-12922.	2.2	67
9	Complex dynamics in a two-enzyme reaction network with substrate competition. Nature Catalysis, 2018, 1, 276-281.	16.1	66
10	Temperature-responsive enzyme–polymer nanoconjugates with enhanced catalytic activities in organic media. Chemical Communications, 2013, 49, 6090.	2.2	65
11	Chemically-powered swimming and diffusion in the microscopic world. Nature Reviews Chemistry, 2021, 5, 500-510.	13.8	61
12	Functional protein–organic/inorganic hybrid nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 320-328.	3.3	58
13	Enhanced Diffusion of Catalytically Active Enzymes. ACS Central Science, 2019, 5, 939-948.	5.3	50
14	Lectin Agglutinated Multienzyme Catalyst with Enhanced Substrate Affinity and Activity. ACS Catalysis, 2016, 6, 3789-3795.	5.5	47
15	Magnetic enzyme nanogel (MENG): a universal synthetic route for biocatalysts. Chemical Communications, 2012, 48, 3315.	2.2	46
16	Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate. Green Chemistry, 2013, 15, 1155.	4.6	43
17	Aldolase Does Not Show Enhanced Diffusion in Dynamic Light Scattering Experiments. Nano Letters, 2018, 18, 8025-8029.	4.5	37
18	Chemo-enzymatic synthesis of valrubicin using Pluronic conjugated lipase with temperature responsiveness in organic media. RSC Advances, 2013, 3, 22963.	1.7	29

YIFEI ZHANG

#	Article	IF	CITATIONS
19	Graphene oxide enabled long-term enzymatic transesterification in an anhydrous gas flux. Nature Communications, 2019, 10, 2684.	5.8	28
20	Lectin corona enhances enzymatic catalysis on the surface of magnetic nanoparticles. Biochemical Engineering Journal, 2018, 129, 26-32.	1.8	27
21	Redesigning regulatory components of quorum-sensing system for diverse metabolic control. Nature Communications, 2022, 13, 2182.	5.8	26
22	Lipase-Catalyzed One-Step and Regioselective Synthesis of Clindamycin Palmitate. Organic Process Research and Development, 2013, 17, 1179-1182.	1.3	21
23	Microscale Colocalization of Cascade Enzymes Yields Activity Enhancement. ACS Nano, 2022, 16, 10383-10391.	7.3	21
24	Controlled display of enzyme activity with a stretchable hydrogel. Chemical Communications, 2013, 49, 9815.	2.2	20
25	A general method for synthesizing enzyme–polymer conjugates in reverse emulsions using Pluronic as a reactive surfactant. Chemical Communications, 2015, 51, 9674-9677.	2.2	20
26	Reversible encapsulation of lysozyme within mPEG-b-PMAA: experimental observation and molecular dynamics simulation. Soft Matter, 2013, 9, 8723.	1.2	18
27	Reversibly Bound Kinesin-1 Motor Proteins Propelling Microtubules Demonstrate Dynamic Recruitment of Active Building Blocks. Nano Letters, 2018, 18, 1530-1534.	4.5	17
28	Synthesis of Lutein Esters by Using a Reusable Lipase-Pluronic Conjugate as the Catalyst. Catalysis Letters, 2015, 145, 1825-1829.	1.4	15
29	Enzymatic Synthesis of Lutein Dipalmitate in Organic Solvents. Catalysis Letters, 2015, 145, 995-999.	1.4	13
30	Inhibitors in Commercially Available 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonate) Affect Enzymatic Assays. Analytical Chemistry, 2020, 92, 1502-1510.	3.2	11
31	Microenvironmental engineering: An effective strategy for tailoring enzymatic activities. Chinese Journal of Chemical Engineering, 2020, 28, 2028-2036.	1.7	10
32	Activation of enzyme nanogel in organic solvents by PEG–substrate joint imprinting. RSC Advances, 2014, 4, 40301.	1.7	9
33	Enantioselective Ammonolysis of Phenylglycine Methyl Ester with Lipase–Pluronic Nanoconjugate in Tertiary Butanol. Catalysis Letters, 2014, 144, 1407-1410.	1.4	8
34	Uniform mPEGâ€ <i>b</i> â€PMETAC enables pHâ€responsive delivery of insulin. Journal of Applied Polymer Science, 2015, 132, .	1.3	5
35	Kinesin-Recruiting Microtubules Exhibit Collective Gliding Motion while Forming Motor Trails. ACS Nano, 2020, 14, 16547-16557.	7.3	3
36	Toward modular construction of cell-free multienzyme systems. Chinese Journal of Catalysis, 2022, 43, 1749-1760.	6.9	3

#	Article	IF	CITATIONS
37	Epoxidation of Fatty Acids by Pluronic-Conjugated Lipase in Organic Media. Catalysis Letters, 2016, 146, 1073-1078.	1.4	2
38	Actuating macroscopic machines with nanoscopic engines. Matter, 2021, 4, 1100-1101.	5.0	1