List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2401379/publications.pdf Version: 2024-02-01

		172457	138484
189	4,368	29	58
papers	citations	h-index	g-index
193	193	193	3522
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Heteroatom doped graphene engineering for energy storage and conversion. Materials Today, 2020, 39, 47-65.	14.2	400
2	Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Progress in Energy and Combustion Science, 2019, 75, 100786.	31.2	379
3	A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Research, 2019, 12, 2655-2694.	10.4	283
4	Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon, 2021, 177, 304-331.	10.3	239
5	An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: From zero to bi-dimensional materials. Carbon, 2022, 193, 298-338.	10.3	168
6	Microwave-assisted thin reduced graphene oxide-cobalt oxide nanoparticles as hybrids for electrode materials in supercapacitor. Journal of Energy Storage, 2021, 40, 102724.	8.1	137
7	Laser processing of graphene and related materials for energy storage: State of the art and future prospects. Progress in Energy and Combustion Science, 2022, 91, 100981.	31.2	124
8	Microwave-assisted synthesis of Mn3O4-Fe2O3/Fe3O4@rGO ternary hybrids and electrochemical performance for supercapacitor electrode. Diamond and Related Materials, 2020, 101, 107622.	3.9	102
9	Synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries. Ionics, 2017, 23, 2061-2067.	2.4	96
10	Facile and fast microwave-assisted formation of reduced graphene oxide-wrapped manganese cobaltite ternary hybrids as improved supercapacitor electrode material. Applied Surface Science, 2019, 481, 296-306.	6.1	86
11	Inorganic–organic composite electrolytes consisting of polybenzimidazole and Cs-substituted heteropoly acids and their application for medium temperature fuel cells. Journal of Materials Chemistry, 2010, 20, 6359.	6.7	77
12	Heteroatom doping of 2D graphene materials for electromagnetic interference shielding: a review of recent progress. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 570-619.	12.3	68
13	Nanocomposite matrix conjugated with carbon nanomaterials for photocatalytic wastewater treatment. Journal of Hazardous Materials, 2021, 410, 124657.	12.4	66
14	Elaboration and characterization of sol–gel derived ZrO2 thin films treated with hot water. Applied Surface Science, 2012, 258, 5250-5258.	6.1	59
15	Electrochemical deposition of uniform and porous Co–Ni layered double hydroxide nanosheets on nickel foam for supercapacitor electrode with improved electrochemical efficiency. Journal of Energy Storage, 2022, 50, 104638.	8.1	59
16	Systematic characterization of the effect of Ag@TiO2 nanoparticles on the performance of plasmonic dye-sensitized solar cells. Scientific Reports, 2017, 7, 15690.	3.3	54
17	Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnology Reviews, 2021, 10, 1662-1739.	5.8	50
18	Superior performance of Ni(OH)2-ErGO@ NF electrode materials as pseudocapacitance using electrochemical deposition via two simple successive steps. Journal of Energy Storage, 2020, 30, 101485.	8.1	49

#	Article	IF	CITATIONS
19	Carbon-dot-loaded CoxNi1â^'xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic a antimicrobial potential: An engineered nanocomposite for wastewater treatment. Scientific Reports, 2020, 10, 11534.	and 3.3	48
20	Oxidation of etched Zn foil for the formation of ZnO nanostructure. Journal of Alloys and Compounds, 2011, 509, 6806-6811.	5.5	37
21	Low-temperature crystallization of TiO2 nanotube arrays via hot water treatment and their photocatalytic properties under visible-light irradiation. Materials Chemistry and Physics, 2013, 137, 991-998.	4.0	36
22	Fast synthesis of Li ₂ S–P ₂ S ₅ –Lil solid electrolyte precursors. Inorganic Chemistry Frontiers, 2017, 4, 1660-1664.	6.0	36
23	Nanomaterial Fabrication through the Modification of Sol–Gel Derived Coatings. Nanomaterials, 2021, 11, 181.	4.1	36
24	Formation of self-aligned ZnO nanorods in aqueous solution. Journal of Alloys and Compounds, 2010, 493, 699-706.	5.5	35
25	Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells. Nanoscale Research Letters, 2015, 10, 219.	5.7	33
26	High Ionic Conductivity of Liquid-Phase-Synthesized Li ₃ PS ₄ Solid Electrolyte, Comparable to That Obtained via Ball Milling. ACS Applied Energy Materials, 2021, 4, 2275-2281.	5.1	33
27	Single-step growth of carbon and potassium-embedded TiO2 nanotube arrays for efficient photoelectrochemical hydrogen generation. Electrochimica Acta, 2013, 89, 585-593.	5.2	32
28	Formation of highly crystallized ZnO nanostructures by hot-water treatment of etched Zn foils. Materials Letters, 2013, 91, 111-114.	2.6	32
29	Preparation of Li7P2S8I Solid Electrolyte and Its Application in All-Solid-State Lithium-Ion Batteries with Graphite Anode. Electronic Materials Letters, 2019, 15, 409-414.	2.2	31
30	Synthesis of rutile TiO2 nanowires by thermal oxidation of titanium in the presence of KOH and their ability to photoreduce Cr(VI) ions. Journal of Alloys and Compounds, 2020, 812, 152094.	5.5	30
31	Sulfur–Carbon Nano Fiber Composite Solid Electrolyte for All-Solid-State Li–S Batteries. ACS Applied Energy Materials, 2020, 3, 1569-1573.	5.1	29
32	Photoluminescence properties of rod-like Ce-doped ZnO nanostructured films formed by hot-water treatment of sol–gel derived coating. Optical Materials, 2013, 35, 1902-1907.	3.6	28
33	Hard template synthesis of metal nanowires. Frontiers in Chemistry, 2014, 2, 104.	3.6	28
34	Formation and stabilization of tetragonal phase in sol–gel derived ZrO2 treated with base-hot-water. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 173, 99-104.	3.5	26
35	Ag nanoparticle-filled TiO ₂ nanotube arrays prepared by anodization and electrophoretic deposition for dye-sensitized solar cells. Nanotechnology, 2017, 28, 135207.	2.6	25
36	Water resistance and biodegradation properties of conventionally-heated and microwave-cured cross-linked cellulose nanocrystal/chitosan composite films. Polymer Degradation and Stability, 2021, 188, 109563.	5.8	25

#	Article	IF	CITATIONS
37	Micro- and Nano-assembly of Composite Particles by Electrostatic Adsorption. Nanoscale Research Letters, 2019, 14, 297.	5.7	25
38	High surface area BaZrO3 photocatalyst prepared by base-hot-water treatment. Journal of the European Ceramic Society, 2011, 31, 2699-2705.	5.7	24
39	TiO 2 nanotube arrays formation in fluoride/ethylene glycol electrolyte containing LiOH or KOH as photoanode for dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 343, 33-39.	3.9	23
40	Synthesis of Sulfide Solid Electrolytes through the Liquid Phase: Optimization of the Preparation Conditions. ACS Omega, 2020, 5, 26287-26294.	3.5	22
41	Sunlight activated anodic freestanding ZrO ₂ nanotube arrays for Cr(VI) photoreduction. Nanotechnology, 2018, 29, 375701.	2.6	21
42	Fabrication of an all-solid-state Zn-air battery using electroplated Zn on carbon paper and KOH-ZrO2 solid electrolyte. Applied Surface Science, 2019, 487, 343-348.	6.1	21
43	PMMA-ITO Composite Formation via Electrostatic Assembly Method for Infra-Red Filtering. Nanomaterials, 2019, 9, 886.	4.1	20
44	Mechanochemically synthesized cesium-ion-substituted phosphotungstic acid using several types of cesium-containing salts. Solid State Ionics, 2008, 179, 1174-1177.	2.7	19
45	AgBr nanocrystal-dispersed silsesquioxane–titania hybrid films for holographic materials. Materials Letters, 2010, 64, 2648-2651.	2.6	19
46	Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation. Journal of Solid State Chemistry, 2014, 211, 146-153.	2.9	19
47	Rapid nanosheets and nanowires formation by thermal oxidation of iron in water vapour and their applications as Cr(VI) adsorbent. Applied Surface Science, 2016, 380, 172-177.	6.1	19
48	Nanotube array-based barium titanate–cobalt ferrite composite film for affordable magnetoelectric multiferroics. Journal of Materials Chemistry C, 2019, 7, 10066-10072.	5.5	19
49	Mechanical Properties of Sulfide-Type Solid Electrolytes Analyzed by Indentation Methods. ACS Applied Energy Materials, 2022, 5, 2349-2355.	5.1	19
50	Anhydrous proton conductivity of KHSO4–H3PW12O40 composites and the correlation with hydrogen bonding distance under ambient pressure. Electrochimica Acta, 2011, 56, 9364-9369.	5.2	18
51	Anodic Ag/TiO ₂ nanotube array formation in NaOH/fluoride/ethylene glycol electrolyte as a photoanode for dye-sensitized solar cells. Nanotechnology, 2016, 27, 355605.	2.6	18
52	Fe3O4-embedded rGO composites as anode for rechargeable FeOx-air batteries. Materials Today Communications, 2020, 25, 101540.	1.9	18
53	Morphology and optical properties of ZnO nanorods coupled with metal oxides of various bandgaps by photo-oxidation. Journal of Luminescence, 2021, 229, 117649.	3.1	18
54	Facile formation of Fe3O4-particles decorated carbon paper and its application for all-solid-state rechargeable Fe-air battery. Applied Surface Science, 2019, 486, 257-264.	6.1	17

#	Article	IF	CITATIONS
55	Deposition of Ultrathin Nafion Layers on Sol–Gel-Derived Phenylsilsesquioxane Particles via Layer-by-Layer Assembly. Journal of the Electrochemical Society, 2008, 155, B479.	2.9	16
56	Formation of ZnO nanorod arrays on polytetraflouroethylene (PTFE) via a seeded growth low temperature hydrothermal reaction. Journal of Alloys and Compounds, 2011, 509, 820-826.	5.5	16
57	Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery . Journal of Asian Ceramic Societies, 2014, 2, 165-168.	2.3	16
58	Incorporation of titanium pyrophosphate in polybenzimidazole membrane for medium temperature dry PEFC application. Solid State Ionics, 2020, 344, 115140.	2.7	16
59	Hexavalent Chromium Removal via Photoreduction by Sunlight on Titanium–Dioxide Nanotubes Formed by Anodization with a Fluorinated Glycerol–Water Electrolyte. Catalysts, 2021, 11, 376.	3.5	16
60	Three-dimensional hydrogen-bonding networks and proton conductivities under non-humidified conditions of CsHSO4–WPA composites. Solid State Ionics, 2010, 181, 180-182.	2.7	15
61	Preparation of Li ₃ PS ₄ Solid Electrolyte by Liquid-Phase Shaking Using Organic Solvents with Carbonyl Group as Complex Forming Medium. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 976-980.	0.2	15
62	The Assessment of Cr(VI) Removal by Iron Oxide Nanosheets and Nanowires Synthesized by Thermal Oxidation of Iron in Water Vapour. Procedia Chemistry, 2016, 19, 586-593.	0.7	15
63	Electrostatic Assembly Technique for Novel Composites Fabrication. Journal of Composites Science, 2020, 4, 155.	3.0	15
64	Magnetically recoverable magnetite-reduced graphene oxide as a demulsifier for surfactant stabilized crude oil-in-water emulsion. PLoS ONE, 2020, 15, e0232490.	2.5	15
65	Preparation and Characterization of Stable and Active Pt@TiO ₂ Core–Shell Nanoparticles as Electrocatalyst for Application in PEMFCs. ACS Applied Energy Materials, 2020, 3, 3269-3281.	5.1	15
66	Enhanced photocatalytic and antimicrobial performance of a multifunctional Cu-loaded nanocomposite under UV light: theoretical and experimental study. Nanoscale, 2022, 14, 8306-8317.	5.6	15
67	Mechanochemically synthesized CsH ₂ PO ₄ –H ₃ PW ₁₂ O ₄₀ composites as proton-conducting electrolytes for fuel cell systems in a dry atmosphere. Science and Technology of	6.1	14
68	Advanced Materials. 2011. 12. 034402. Fabrication of well-crystallized mesoporous ZrO2 thin films via Pluronic P123 templated sol–gel route. Ceramics International, 2013, 39, S437-S440.	4.8	14
69	Ex situ Raman mapping study of mechanism of cordierite formation from stoichiometric oxide precursors. Journal of the European Ceramic Society, 2014, 34, 1009-1015.	5.7	14
70	Three modes of high-efficient photocatalysis using composites of TiO2-nanocrystallite-containing mesoporous SiO2 and Au nanoparticles. Journal of Sol-Gel Science and Technology, 2015, 74, 748-755.	2.4	14
71	Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings. Journal of Luminescence, 2015, 158, 44-49.	3.1	14
72	Electrochemical Performance of Sintered Porous Negative Electrodes Fabricated with Atomized Powders for Iron-Based Alkaline Rechargeable Batteries. Journal of the Electrochemical Society, 2017, 164, A2049-A2055.	2.9	14

#	Article	IF	CITATIONS
73	CHS-WSiA doped hexafluoropropylidene-containing polybenzimidazole composite membranes for medium temperature dry fuel cells. International Journal of Hydrogen Energy, 2019, 44, 32201-32209.	7.1	14
74	Effect of ZnO Seed Layer on the Growth of ZnO Nanorods on Silicon Substrate. Materials Today: Proceedings, 2019, 17, 553-559.	1.8	14
75	Novel palladium-guanine-reduced graphene oxide nanocomposite as efficient electrocatalyst for methanol oxidation reaction. Materials Research Bulletin, 2019, 112, 213-220.	5.2	14
76	Comparison of ZrO2, TiO2, and α-Fe2O3 nanotube arrays on Cr(VI) photoreduction fabricated by anodization of Zr, Ti, and Fe foils. Materials Research Express, 2020, 7, 055013.	1.6	14
77	Grainâ€Boundary Sliding and Grain Interlocking in the Creep Deformation of Twoâ€Phase Ceramics. Journal of the American Ceramic Society, 1998, 81, 1611-1621.	3.8	13
78	Design of hierarchically meso–macroporous tetragonal ZrO2 thin films with tunable thickness by spin-coating via sol–gel template route. Microporous and Mesoporous Materials, 2013, 167, 198-206.	4.4	13
79	Facile Fabrication of rGO/Rutile TiO2 Nanowires as Photocatalyst for Cr(VI) Reduction. Materials Today: Proceedings, 2019, 17, 1143-1151.	1.8	13
80	Investigation of the anchor layer formation on different substrates and its feasibility for optical properties control by aerosol deposition. Applied Surface Science, 2019, 483, 212-218.	6.1	13
81	Nanoporous anodic Nb2O5 with pore-in-pore structure formation and its application for the photoreduction of Cr(VI). Chemosphere, 2021, 283, 131231.	8.2	13
82	Cutting-edge development in waste-recycled nanomaterials for energy storage and conversion applications. Nanotechnology Reviews, 2022, 11, 2215-2294.	5.8	13
83	Double-Shear Geometry for the Deformation and Flow of Ceramics at Elevated Temperatures. Journal of the American Ceramic Society, 1996, 79, 449-454.	3.8	12
84	Grain Boundary Sliding and Atomic Structures in Alumina Bicrystals with [0001] Symmetric Tilt Grain Boundaries. Materials Transactions, 2002, 43, 1561-1565.	1.2	12
85	Reversible conversion between AgCl and Ag in AgCl-doped RSiO3/2–TiO2 films prepared by a sol–gel technique. Materials Chemistry and Physics, 2011, 130, 264-269.	4.0	12
86	Optical properties of two-dimensional ZnO nanosheets formed by hot-water treatment of Zn foils. Solid State Communications, 2013, 162, 43-47.	1.9	12
87	Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction. International Journal of Energy Research, 2013, 37, n/a-n/a.	4.5	12
88	A Unique Approach to Characterization of Solâ€Gelâ€Derived Rareâ€Earthâ€Doped Oxyfluoride Glassâ€Ceramics. Journal of the American Ceramic Society, 2013, 96, 476-480.	3.8	12
89	Preparation of thermally and chemically robust superhydrophobic coating from liquid phase deposition and low voltage reversible electrowetting. Thin Solid Films, 2017, 636, 273-282.	1.8	12
90	Photocatalytic performance of freestanding tetragonal zirconia nanotubes formed in H ₂ O ₂ /NH ₄ F/ethylene glycol electrolyte by anodisation of zirconium. Nanotechnology, 2017, 28, 155604.	2.6	12

#	Article	IF	CITATIONS
91	Controlled microstructure and mechanical properties of Al2O3-based nanocarbon composites fabricated by electrostatic assembly method. Nanoscale Research Letters, 2019, 14, 245.	5.7	12
92	Design of Heat-Conductive hBN–PMMA Composites by Electrostatic Nano-Assembly. Nanomaterials, 2020, 10, 134.	4.1	12
93	Cell performance enhancement with titania-doped polybenzimidazole based composite membrane in intermediate temperature fuel cell under anhydrous condition. Journal of the Ceramic Society of Japan, 2018, 126, 789-793.	1.1	11
94	Synthesis of an All ₃ -doped Li ₂ S positive electrode with superior performance in all-solid-state batteries. Materials Advances, 2022, 3, 2488-2494.	5.4	11
95	Controlled facile fabrication of plasmonic enhanced Au-decorated ZnO nanowire arrays dye-sensitized solar cells. Materials Today Communications, 2017, 13, 354-358.	1.9	10
96	Formation of grassy TiO2 nanotube thin film by anodisation in peroxide electrolyte for Cr(VI) removal under ultraviolet radiation. Nanotechnology, 2020, 31, 435605.	2.6	10
97	Formation of a High Conductivity Fuel Cell Electrolyte by Pressing Diphenylsiloxane-Based Inorganic-Organic Hybrid Particles. Journal of the American Ceramic Society, 2009, 92, S185-S188.	3.8	9
98	Preparation of hydroxide ion conductive KOH-ZrO2 electrolyte for all-solid state iron/air secondary battery. Solid State Ionics, 2014, 262, 188-191.	2.7	9
99	Anodised porous Nb2O5 for photoreduction of Cr(VI). Materials Today: Proceedings, 2019, 17, 1033-1039.	1.8	9
100	Facile Fabrication of Plasmonic Enhanced Noble-Metal-Decorated ZnO Nanowire Arrays for Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2020, 20, 359-366.	0.9	9
101	Deformation-induced surface corrugation of superplastic ceramics. Journal of Materials Research, 2001, 16, 1879-1882.	2.6	8
102	Sol-gel synthesis of novel photosensitive material with advanced holographic properties. Journal of the Ceramic Society of Japan, 2011, 119, 426-429.	1.1	8
103	Synthesis of high-edge exposure MoS2 nano flakes. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	8
104	Study of branched TiO ₂ nanotubes and their application to dye sensitized solar cells. Journal of the Ceramic Society of Japan, 2014, 122, 886-888.	1.1	8
105	Effects of multi-sized and -shaped Ag@TiO ₂ nanoparticles on the performance of plasmonic dye-sensitized solar cells. Journal of the Ceramic Society of Japan, 2018, 126, 139-151.	1.1	8
106	Rapid TiO ₂ Nanotubes Formation in Aged Electrolyte and Their Application as Photocatalysts for Cr(VI) Reduction Under Visible Light. IEEE Nanotechnology Magazine, 2018, 17, 1106-1110.	2.0	8
107	Effect of TiO2 sol on the conversion efficiency of TiO2 based dye-sensitized solar cell. Journal of Sol-Gel Science and Technology, 2020, 95, 439-446.	2.4	8
108	Electrostatically assembled SiC–Al2O3 composite particles for direct selective laser sintering. Advanced Powder Technology, 2021, 32, 2074-2084.	4.1	8

#	Article	IF	CITATIONS
109	Transparent conductive polymer composites obtained via electrostatically assembled carbon nanotubes–poly (methyl methacrylate) composite particles. Advanced Powder Technology, 2022, 33, 103528.	4.1	8
110	Stress Relaxation of Polycrystalline Ceramics with Grainâ€Boundary Sliding and Grain Interlocking. Journal of the American Ceramic Society, 1999, 82, 169-177.	3.8	7
111	Effects of Addition of Supramolecular Assembly on the Anatase Nanocrystalline Precipitation of Sol–Gel Derived SiO ₂ –TiO ₂ Coating Films by Hot-Water Treatment. Journal of Nanoscience and Nanotechnology, 2006, 6, 1802-1806.	0.9	7
112	Vinylester resin lay hybrids using various intercalating agents. Journal of Applied Polymer Science, 2010, 115, 2060-2068.	2.6	7
113	Design and synthesis of mesoporous ZrO2 thin films using surfactant Pluronic P123 via sol-gel technique. Journal of the Ceramic Society of Japan, 2011, 119, 517-521.	1.1	7
114	Sol-gel template synthesis of BaTiO3 films with nano-periodic structures. Materials Letters, 2018, 227, 120-123.	2.6	7
115	Ag@TiO ₂ Nanowires-Loaded Dye-Sensitized Solar Cells and Their Effect on the Various Performance Parameters of DSSCs. Journal of the Electrochemical Society, 2018, 165, H500-H509.	2.9	7
116	Enhancement of interfacial property by novel solid ionomer CsHSO4-H4SiW12O40 for the three-phase interface of a medium-temperature anhydrous fuel cell. Materials Letters, 2019, 253, 201-204.	2.6	7
117	Fabrication of Carbon-decorated Al ₂ O ₃ Composite Powders using Cellulose Nanofiber for Selective Laser Sintering. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2019, 66, 168-173.	0.2	7
118	International Industrial Internship: A Case Study from a Japanese Engineering University Perspective. Education Sciences, 2021, 11, 156.	2.6	7
119	Preparation of Li3PS4–Li3PO4 Solid Electrolytes by Liquid-Phase Shaking for All-Solid-State Batteries. Electronic Materials, 2021, 2, 39-48.	1.9	7
120	Formation of porous Al ₂ O ₃ –SiO ₂ composite ceramics by electrostatic assembly. Journal of the Ceramic Society of Japan, 2020, 128, 605-610.	1.1	7
121	Mechanical properties of alumina matrix composite reinforced with carbon nanofibers affected by small interfacial sliding shear stress. Ceramics International, 2022, 48, 8466-8472.	4.8	7
122	Formation mechanism of titania nanosheet cryatallites on silica–titania gel films by vibration hot-water treatment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 161, 170-174.	3.5	6
123	Mechanical properties comparison of phenylsilsesquioxane-methylsilsesquioxane hybrid films by indentation. Journal of the Ceramic Society of Japan, 2011, 119, 490-493.	1.1	6
124	Influence of UV irradiation on mechanical properties and structures of sol–gel-derived vinylsilsesquioxane films. Journal of the Ceramic Society of Japan, 2012, 120, 442-445.	1.1	6
125	Proton conductive composite electrolytes in the KH2PO4–H3PW12O40 system for H2/O2 fuel cell operation. Applied Energy, 2013, 112, 1108-1114.	10.1	6
126	Comparative study on the properties of crossâ€linked cellulose nanocrystals/chitosan film composites with conventional heating and microwave curing. Journal of Applied Polymer Science, 2020, 137, 49578.	2.6	6

#	Article	IF	CITATIONS
127	Synthesis of MRGO Nanocomposites as a Potential Photocatalytic Demulsifier for Crude Oil-in-Water Emulsion. Journal of Composites Science, 2021, 5, 174.	3.0	6
128	Development of Iron-Based Rechargeable Batteries with Sintered Porous Iron Electrodes. ECS Transactions, 2017, 75, 111-116.	0.5	5
129	Cr(VI) removal on visible light active TiO2 nanotube arrays. AIP Conference Proceedings, 2018, , .	0.4	5
130	Multiferroic nanocomposite fabrication via liquid phase using anodic alumina template. Science and Technology of Advanced Materials, 2018, 19, 535-542.	6.1	5
131	Structural, Thermal and Electrochemical studies of Sm substituted CrFeO3 Nanoâ€Pervoskites. Journal of Alloys and Compounds, 2021, 870, 159420.	5.5	5
132	Formation of self-organized ZrO2–TiO2 and ZrTiO4–TiO2 nanotube arrays by anodization of Ti–40Zr foil for Cr(VI) removal. Journal of Materials Research and Technology, 2022, 19, 2991-3003.	5.8	5
133	Application of Speckle Strain Meter to Viscoelastic Study of Ceramic Materials Journal of the Ceramic Society of Japan, 2000, 108, 673-676.	1.3	4
134	Fabrication of three-dimensionally close-packed aggregate of particles under mechanical vibration. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 161, 193-197.	3.5	4
135	Texture development of surface-modified SiC prepared by EPD in a strong magnetic field. Journal of the Ceramic Society of Japan, 2011, 119, 667-671.	1.1	4
136	Morphology-control of crystallites precipitated from ZnO gel films by applying electric field during hot-water treatment. Materials Science in Semiconductor Processing, 2013, 16, 1232-1239.	4.0	4
137	Effect of mixed alkali metal ions in highly proton conductive K/Cs-hydrogen sulfate-phosphotungstic acid composites prepared by mechanical milling. Solid State Ionics, 2019, 340, 115022.	2.7	4
138	Effects of cesium-substituted silicotungstic acid doped with polybenzimidazole membrane for the application of medium temperature polymer electrolyte fuel cells. E3S Web of Conferences, 2019, 83, 01008.	0.5	4
139	Formation of Feâ€embedded graphitic carbon network composites as anode materials for rechargeable Feâ€air batteries. Energy Storage, 2020, 2, e196.	4.3	4
140	Improved green body strength using PMMA–Al ₂ O ₃ composite particles fabricated via electrostatic assembly. Nano Express, 2020, 1, 030001.	2.4	4
141	Electrical and Thermal Properties of PMMA/h-BN Composite Material Produced by Electrostatic Adsorption Method. IEEJ Transactions on Fundamentals and Materials, 2019, 139, 60-65.	0.2	4
142	Anodized TiO2 nanotubes using Ti wire in fluorinated ethylene glycol with air bubbles for removal of methylene blue dye. Journal of Applied Electrochemistry, 2022, 52, 173-188.	2.9	4
143	Controlled formation of carbon nanotubes incorporated ceramic composite granules by electrostatic integrated nano-assembly. Nanoscale, 2022, 14, 9669-9674.	5.6	4
144	Experimental study and simulation on the formation of two-dimensional particle arrangements. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 199-202.	3.5	3

#	Article	IF	CITATIONS
145	Reversible change of diffraction efficiency in Cl-containing 3-glycidoxypropyl silsesquioxane films co-doped with Ag and Cu. Journal of the Ceramic Society of Japan, 2016, 124, 150-154.	1.1	3
146	Effect of NaOH Concentration on the Formation of TiO ₂ Nanotube Arrays by Anodic Oxidation Process for Photoelectrochemical Cell. Solid State Phenomena, 2017, 264, 152-155.	0.3	3
147	Tailoring Parameters to Produce Nanowires on Metal Surface via Surface Oxidation Process. Journal of Physics: Conference Series, 2018, 1082, 012052.	0.4	3
148	Synthesis of TiO ₂ Nanotubes Decorated with Ag Nanoparticles (TNTs/AgNPs) For Visible Light Degradation of Methylene Blue. Journal of Physics: Conference Series, 2018, 1082, 012105.	0.4	3
149	Rapid Nucleation of Reduced Graphene Oxide-Supported Palladium Electrocatalysts for Methanol Oxidation Reaction. Journal of Nanoscience and Nanotechnology, 2019, 19, 7236-7243.	0.9	3
150	Anhydrous proton conductive xCHS-(1-x)WSiA composites prepared via liquid-phase shaking. Solid State Ionics, 2019, 337, 1-6.	2.7	3
151	Metal oxide for heavy metal detection and removal. , 2020, , 299-332.		3
152	Formation of Dense and High-Aspect-Ratio Iron Oxide Nanowires by Water Vapor-Assisted Thermal Oxidation and Their Cr(VI) Adsorption Properties. ACS Omega, 2021, 6, 28203-28214.	3.5	3
153	Preparation of Cal ₂ -Doped Li ₇ P ₃ S ₁₁ by Liquid-Phase Synthesis and Its Application in an All-Solid-State Battery with a Graphite Anode. Energy & Fuels, 2022, 36, 4577-4584.	5.1	3
154	High Ionic Conductivity with Improved Lithium Stability of CaS- and Cal ₂ -Doped Li ₇ P ₃ S ₁₁ Solid Electrolytes Synthesized by Liquid-Phase Synthesis. ACS Omega, 2022, 7, 16561-16567.	3.5	3
155	Grain Boundary Structures and High Temperature Deformations in Alumina Bicrystals. Journal of the Ceramic Society of Japan, 2003, 111, 688-691.	1.3	2
156	Effect of external fields applied during hot-water treatment on the aspect ratio of nanocrystallites formed on SiO2·TiO2 coatings derived from sol–gel techniques. Journal of Sol-Gel Science and Technology, 2010, 56, 345-352.	2.4	2
157	Low Temperature Fabrication of Titanium Oxide Composite Films by Hot-Water Treatment and Application for Dye-Sensitized Solar Cells. Electrochemistry, 2011, 79, 817-820.	1.4	2
158	Formation of Two-Dimensional ZnO Nanosheets by Rapid Thermal Oxidation in Oxygenated Environment. Journal of Nanoscience and Nanotechnology, 2014, 14, 2960-2967.	0.9	2
159	Iron Composite Anodes for Fabricating All-Solid-State Iron-Air Rechargeable Batteries. Key Engineering Materials, 2014, 616, 114-119.	0.4	2
160	Effect of KOH added to ethylene glycol electrolyte on the self-organization of anodic ZrO2 nanotubes. AIP Conference Proceedings, 2016, , .	0.4	2
161	Development of Novel Functional Composite Materials by Nano-Assembly Technique of Integrated Composite Powders. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 311-316.	0.2	2
162	Hierarchical Porous α-Fe ₂ O ₃ Formation by Thermal Oxidation of Iron as Catalyst for Cr(Vi) Reduction. Journal of Physics: Conference Series, 2018, 1082, 012044.	0.4	2

#	Article	IF	CITATIONS
163	Development of liquid-phase fabrication of nanotube array-based multiferroic nanocomposite film. Journal of Alloys and Compounds, 2021, 869, 159219.	5.5	2
164	Production of Thermal Conductive PMMA/BN Electric Insulating Composite Material using Electrostatic Adsorption Method. IEEJ Transactions on Fundamentals and Materials, 2016, 136, 186-192.	0.2	2
165	Li ₄ SiO ₄ Doped-Li ₇ P ₂ S ₈ I solid electrolytes with high lithium stability synthesised using liquid-phase shaking. RSC Advances, 2022, 12, 7469-7474.	3.6	2
166	Measurement of Simple Shear Strain with a Uniaxial Speckle Strain Meter. Journal of the Ceramic Society of Japan, 1998, 106, 1027-1030.	1.3	1
167	Grain Boundary Characters and Sliding of [0001] Symmetric Tilt Boundaries in Alumina. Materials Research Society Symposia Proceedings, 2003, 778, 3161.	0.1	1
168	Formation of 1-dimensional (1D) and 3-dimensional (3D) ZnO nanostructures by oxidation and chemical methods. Materialwissenschaft Und Werkstofftechnik, 2012, 43, 457-460.	0.9	1
169	Formation of TiO2 nanotube arrays in KOH added fluoride-ethylene glycol (EG) electrolyte and its photoelectrochemical response. AlP Conference Proceedings, 2016, , .	0.4	1
170	Formation of TiO2 nanotube arrays by anodic oxidation in LiOH added ethylene glycol electrolyte and the effect of thermal annealing on the photoelectrochemical properties. AIP Conference Proceedings, 2016, , .	0.4	1
171	Preparation of BaTiO3Nanotube Arrays, CoFe2O4Nanoparticles and Their Composites. ECS Transactions, 2018, 82, 51-57.	0.5	1
172	Nucleation and growth controlled reduced graphene oxide–supported palladium electrocatalysts for methanol oxidation reaction. Nanomaterials and Nanotechnology, 2019, 9, 184798041982717.	3.0	1
173	Oxide nanotubes formation by anodic process and their application in photochemical reactions for heavy metal removal. , 2020, , 277-303.		1
174	One-Dimensional α-Fe2O3 Nanowires Formation by High Temperature Oxidation of Iron and Their Potential Use to Remove Cr(VI) Ions. , 2018, , 115-142.		1
175	Fabrication of Integrated Composite Particles by Electrostatic Adsorption Technique and Microstructural Control of Functional Nanocomposits. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2010, 18, 16-20.	0.0	1
176	Influence of Orientation of Flaky Boron Nitride on Electrical and Thermal Properties of Polymethylmethacrylate / Boron Nitride Electrical Insulating Composite Material Produced by Electrostatic Adsorption Method. IEEJ Transactions on Fundamentals and Materials, 2017, 137, 202-207.	0.2	1
177	Formation and photoelectrochemical properties of TiO2 nanotube arrays in fluorinated organic electrolyte. Journal of Mechanical Engineering and Sciences, 2017, 11, 3129-3136.	0.6	1
178	Photoreduction of Cr(VI) in wastewater by anodic nanoporous Nb2O5 formed at high anodizing voltage and electrolyte temperature. Environmental Science and Pollution Research, 2022, 29, 60600-60615.	5.3	1
179	Ordered arrays of electrostatically assembled SiO2–SiO2 composite particles by electrophoresis-induced stimulation. Journal of Sol-Gel Science and Technology, 2022, 104, 548-557.	2.4	1
180	Anodic film on Ti: Nanotubes formation and application for Cr(VI) and Cd(II) removal. Materials Today: Proceedings, 2022, , .	1.8	1

#	Article	IF	CITATIONS
181	Rheological Considerations on the Grain-Boundary Sliding of Polycrystalline Ceramics. Journal of the Ceramic Society of Japan, 1997, 105, 329-334.	1.3	0
182	Estimation of interfacial proton conductivity by effective media approximation for sheet-like composite electrolyte prepared from poly(2-acrylamido-2-methyl-1-propanesulfonic acid)-deposited core-shell particles. Journal of the Ceramic Society of Japan, 2011, 119, 845-849.	1.1	0
183	Anodic ZrO ₂ Nanotube Arrays Formation by Anodisation in Ethylene Glycol with Varying Amount of Water. Solid State Phenomena, 0, 264, 224-227.	0.3	0
184	Characterizations and photoelectrochemical properties of Fe2O3 and ZrO2 nanotubes formed by anodic oxidation process. AlP Conference Proceedings, 2017, , .	0.4	0
185	Formation of anodic TiO2 nanotube arrays in NaOH added fluoride-ethylene glycol electrolyte for dye-sensitized solar cells. AIP Conference Proceedings, 2017, , .	0.4	0
186	Preface: 3rd IGNITE-2016. AIP Conference Proceedings, 2017, , .	0.4	0
187	PM-15 ZnO nanoparticles with fluorescent properties suitable for modification on protein surfaces Microscopy (Oxford, England), 2019, 68, i42-i42.	1.5	0
188	Phase transformation and size control of Mg0.1Sr0.1Mn0.8Fe2O4 nanocrystals through variation of annealing time. Journal of Magnetism and Magnetic Materials, 2021, 537, 168238.	2.3	0
189	Liquid Phase Synthesis and Morphological Observation of BaTiO ₃ –CoFe ₂ O ₄ Nanocomposite Films. Journal of Nanoscience and Nanotechnology, 2020, 20, 510-515.	0.9	0