
Priv-Dozâ€Dr Falk Harnisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2401344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells. Energy and Environmental Science, 2008, 1, 144.	15.6	482
2	Challenges and Constraints of Using Oxygen Cathodes in Microbial Fuel Cells. Environmental Science & Technology, 2006, 40, 5193-5199.	4.6	479
3	Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications, 2005, 7, 1405-1410.	2.3	466
4	Microbial electrochemistry and technology: terminology and classification. Energy and Environmental Science, 2015, 8, 513-519.	15.6	397
5	From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chemical Society Reviews, 2010, 39, 4433.	18.7	335
6	Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energy and Environmental Science, 2011, 4, 1417.	15.6	289
7	Subcritical Water as Reaction Environment: Fundamentals of Hydrothermal Biomass Transformation. ChemSusChem, 2011, 4, 566-579.	3.6	280
8	ls there a Specific Ecological Niche for Electroactive Microorganisms?. ChemElectroChem, 2016, 3, 1282-1295.	1.7	253
9	Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosensors and Bioelectronics, 2008, 24, 1006-1011.	5.3	206
10	Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: The role of pH on biofilm formation, performance and composition. Bioresource Technology, 2011, 102, 9683-9690.	4.8	203
11	Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions. Applied Catalysis B: Environmental, 2009, 89, 455-458.	10.8	189
12	A Basic Tutorial on Cyclic Voltammetry for the Investigation of Electroactive Microbial Biofilms. Chemistry - an Asian Journal, 2012, 7, 466-475.	1.7	189
13	Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis. Energy and Environmental Science, 2012, 5, 9769.	15.6	187
14	The Suitability of Monopolar and Bipolar Ion Exchange Membranes as Separators for Biological Fuel Cells. Environmental Science & Technology, 2008, 42, 1740-1746.	4.6	170
15	Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature for biofilm formation and performance. Biosensors and Bioelectronics, 2010, 26, 803-808.	5.3	165
16	Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry, 2011, 81, 74-80.	2.4	159
17	Selectivity versus Mobility: Separation of Anode and Cathode in Microbial Bioelectrochemical Systems. ChemSusChem, 2009, 2, 921-926.	3.6	154
18	The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosensors and Bioelectronics, 2010, 25, 2167-2171.	5.3	154

#	Article	IF	CITATIONS
19	Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: Platinum vs. iron(II) phthalocyanine based electrodes. Electrochemistry Communications, 2009, 11, 2253-2256.	2.3	144
20	Comparative study of IVB–VIB transition metal compound electrocatalysts for the hydrogen evolution reaction. Applied Catalysis B: Environmental, 2012, 126, 225-230.	10.8	138
21	Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine. Planta, 2007, 226, 159-167.	1.6	133
22	Production of drop-in fuels from biomass at high selectivity by combined microbial and electrochemical conversion. Energy and Environmental Science, 2017, 10, 2231-2244.	15.6	126
23	Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry, 2013, 93, 23-29.	2.4	122
24	Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar. Biotechnology for Biofuels, 2017, 10, 303.	6.2	122
25	In Situ Spectroelectrochemical Investigation of Electrocatalytic Microbial Biofilms by Surfaceâ€Enhanced Resonance Raman Spectroscopy. Angewandte Chemie - International Edition, 2011, 50, 2625-2627.	7.2	114
26	Extracellular electron transfer of biocathodes: Revealing the potentials for nitrate and nitrite reduction of denitrifying microbiomes dominated by Thiobacillus sp Electrochemistry Communications, 2014, 49, 93-97.	2.3	109
27	Electrochemistry for biofuel generation: Electrochemical conversion of levulinic acid to octane. Energy and Environmental Science, 2012, 5, 5231-5235.	15.6	108
28	Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy. Energy and Environmental Science, 2012, 5, 7017.	15.6	101
29	Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochemistry Communications, 2006, 8, 869-873.	2.3	93
30	Toxicity Response of Electroactive Microbial Biofilms—A Decisive Feature for Potential Biosensor and Power Source Applications. ChemPhysChem, 2010, 11, 2834-2837.	1.0	91
31	Electrifying White Biotechnology: Engineering and Economic Potential of Electricityâ€Driven Bioâ€Production. ChemSusChem, 2015, 8, 758-766.	3.6	81
32	Microbial electricity driven anoxic ammonium removal. Water Research, 2018, 130, 168-175.	5.3	81
33	Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Letters in Applied Microbiology, 2005, 41, 286-290.	1.0	78
34	Evaluating the effects of scaling up on the performance of bioelectrochemical systems using a technical scale microbial electrolysis cell. Bioresource Technology, 2014, 163, 206-213.	4.8	77
35	Quantum dots encapsulated with amphiphilic alginate as bioprobe for fast screening anti-dengue virus agents. Biosensors and Bioelectronics, 2008, 24, 1012-1019.	5.3	76
36	Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems. Bioelectrochemistry, 2009, 75, 136-141.	2.4	76

#	Article	IF	CITATIONS
37	Electrochemical CO2 reduction to formate at indium electrodes with high efficiency and selectivity in pH neutral electrolytes. Applied Catalysis B: Environmental, 2018, 238, 546-556.	10.8	76
38	Revealing the electrochemically driven selection in natural community derived microbial biofilms using flow-cytometry. Energy and Environmental Science, 2011, 4, 1265.	15.6	74
39	Microwave-assisted hydrothermal degradation of fructose and glucose in subcritical water. Biomass and Bioenergy, 2012, 39, 389-398.	2.9	72
40	Biofouling of membranes in microbial electrochemical technologies: Causes, characterization methods and mitigation strategies. Bioresource Technology, 2019, 279, 327-338.	4.8	71
41	Electrochemistry for the generation of renewable chemicals: electrochemical conversion of levulinic acid. RSC Advances, 2015, 5, 26634-26643.	1.7	69
42	A framework for modeling electroactive microbial biofilms performing direct electron transfer. Bioelectrochemistry, 2015, 106, 194-206.	2.4	68
43	Cytometric fingerprints: evaluation of new tools for analyzing microbial community dynamics. Frontiers in Microbiology, 2014, 5, 273.	1.5	67
44	The Diversity of Techniques to Study Electrochemically Active Biofilms Highlights the Need for Standardization. ChemSusChem, 2012, 5, 1027-1038.	3.6	66
45	Dynamics of Cathode-Associated Microbial Communities and Metabolite Profiles in a Glycerol-Fed Bioelectrochemical System. Applied and Environmental Microbiology, 2013, 79, 4008-4014.	1.4	64
46	Hydrothermal liquefaction of cellulose in subcritical water—the role of crystallinity on the cellulose reactivity. RSC Advances, 2013, 3, 11035.	1.7	63
47	Electrobiorefineries: Unlocking the Synergy of Electrochemical and Microbial Conversions. Angewandte Chemie - International Edition, 2018, 57, 10016-10023.	7.2	62
48	The Dilemma of Supporting Electrolytes for Electroorganic Synthesis: A Case Study on Kolbe Electrolysis. ChemSusChem, 2016, 9, 50-60.	3.6	61
49	Microbiomes in bioenergy production: From analysis to management. Current Opinion in Biotechnology, 2014, 27, 65-72.	3.3	60
50	Bioelectrochemical systems: Microbial versus enzymatic catalysis. Electrochimica Acta, 2012, 82, 165-174.	2.6	57
51	Detection of the adhesion events of dispersed single montmorillonite particles at a static mercury drop electrode. Electrochemistry Communications, 2004, 6, 929-933.	2.3	55
52	Comparative study on the performance of pyrolyzed and plasma-treated iron(II) phthalocyanine-based catalysts for oxygen reduction in pH neutral electrolyte solutions. Journal of Power Sources, 2009, 193, 86-92.	4.0	54
53	Electrocatalytic and corrosion behaviour of tungsten carbide in near-neutral pH electrolytes. Applied Catalysis B: Environmental, 2009, 87, 63-69.	10.8	54
54	On the removal of sulfonamides using microbial bioelectrochemical systems. Electrochemistry Communications, 2013, 26, 77-80.	2.3	53

#	Article	IF	CITATIONS
55	What Is the Essence of Microbial Electroactivity?. Frontiers in Microbiology, 2016, 7, 1890.	1.5	50
56	Electrochemistry for Biofuel Generation: Transformation of Fatty Acids and Triglycerides to Dieselâ€Like Olefin/Ether Mixtures and Olefins. ChemSusChem, 2015, 8, 886-893.	3.6	46
57	Coupling electric energy and biogas production in anaerobic digesters – impacts on the microbiome. RSC Advances, 2015, 5, 31329-31340.	1.7	44
58	Life Electric—Nature as a Blueprint for the Development of Microbial Electrochemical Technologies. Joule, 2017, 1, 244-252.	11.7	44
59	Resting <i>Escherichia coli</i> as Chassis for Microbial Electrosynthesis: Production of Chiral Alcohols. ChemSusChem, 2019, 12, 1631-1634.	3.6	44
60	Examining sludge production in bioelectrochemical systems treating domestic wastewater. Bioresource Technology, 2015, 198, 913-917.	4.8	42
61	Monitoring and engineering reactor microbiomes of denitrifying bioelectrochemical systems. RSC Advances, 2015, 5, 68326-68333.	1.7	39
62	Functional Redundancy of Microbial Anodes fed by Domestic Wastewater. ChemElectroChem, 2014, 1, 1923-1931.	1.7	37
63	Enhancement and monitoring of pollutant removal in a constructed wetland by microbial electrochemical technology. Bioresource Technology, 2015, 196, 490-499.	4.8	37
64	Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes. Systematic and Applied Microbiology, 2015, 38, 135-139.	1.2	36
65	Electro-bioremediation of nitrate and arsenite polluted groundwater. Water Research, 2021, 190, 116748.	5.3	34
66	Harvesting electricity from benzene and ammonium-contaminated groundwater using a microbial fuel cell with an aerated cathode. RSC Advances, 2015, 5, 5321-5330.	1.7	33
67	Tapping Renewables: A New Dawn for Organic Electrosynthesis in Aqueous Reaction Media. ChemElectroChem, 2019, 6, 4126-4133.	1.7	33
68	Unraveling the Interfacial Electron Transfer Dynamics of Electroactive Microbial Biofilms Using Surfaceâ€Enhanced Raman Spectroscopy. ChemSusChem, 2013, 6, 487-492.	3.6	32
69	Paving the way for bioelectrotechnology: Integrating electrochemistry into bioreactors. Engineering in Life Sciences, 2017, 17, 77-85.	2.0	32
70	Electroactive biofilms as sensor for volatile fatty acids: Cross sensitivity, response dynamics, latency and stability. Sensors and Actuators B: Chemical, 2017, 241, 466-472.	4.0	32
71	A Microbial Biosensor Platform for Inline Quantification of Acetate in Anaerobic Digestion: Potential and Challenges. Chemical Engineering and Technology, 2016, 39, 637-642.	0.9	31
72	Microbial Electrosynthesis—An Inventory on Technology Readiness Level and Performance of Different Process Variants. Biotechnology Journal, 2020, 15, e2000066.	1.8	30

#	Article	IF	CITATIONS
73	Spotlight on the Energy Harvest of Electroactive Microorganisms: The Impact of the Applied Anode Potential. Frontiers in Microbiology, 2019, 10, 1352.	1.5	29
74	Study of Electrochemical Reduction of CO ₂ for Future Use in Secondary Microbial Electrochemical Technologies. ChemSusChem, 2017, 10, 958-967.	3.6	27
75	Microbial ecologyâ€based engineering of Microbial Electrochemical Technologies. Microbial Biotechnology, 2018, 11, 22-38.	2.0	27
76	From the test-tube to the test-engine: assessing the suitability of prospective liquid biofuel compounds. RSC Advances, 2013, 3, 9594.	1.7	26
77	The adhesion and spreading of thrombocyte vesicles on electrode surfaces. Bioelectrochemistry, 2008, 74, 210-216.	2.4	25
78	Microbial Electrochemical Sensors for Anaerobic Digestion Process Control – Performance of Electroactive Biofilms underÂReal Conditions. Chemical Engineering and Technology, 2018, 41, 687-695.	0.9	24
79	Identification of Clostridium cochlearium as an electroactive microorganism from the mouse gut microbiome. Bioelectrochemistry, 2019, 130, 107334.	2.4	23
80	Trophic networks improve the performance of microbial anodes treating wastewater. Npj Biofilms and Microbiomes, 2019, 5, 27.	2.9	23
81	The electrode potential determines the yield coefficients of early-stage Geobacter sulfurreducens biofilm anodes. Bioelectrochemistry, 2021, 140, 107752.	2.4	23
82	Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1. Bioelectrochemistry, 2018, 119, 172-179.	2.4	22
83	Microbial electrochemical CO2 reduction: To integrate or not to integrate?. Joule, 2022, 6, 935-940.	11.7	22
84	Microbial Fuel Cells and Bioelectrochemical Systems. , 2011, , 643-659.		21
85	Predicting and experimental evaluating bio-electrochemical synthesis — A case study with Clostridium kluyveri. Bioelectrochemistry, 2017, 118, 114-122.	2.4	21
86	Coupled Electrochemical and Microbial Catalysis for the Production of Polymer Bricks. ChemSusChem, 2020, 13, 5295-5300.	3.6	21
87	Waste Water Derived Electroactive Microbial Biofilms: Growth, Maintenance, and Basic Characterization. Journal of Visualized Experiments, 2013, , 50800.	0.2	20
88	The microbial electrochemical Peltier heat: an energetic burden and engineering chance for primary microbial electrochemical technologies. Energy and Environmental Science, 2016, 9, 2539-2544.	15.6	20
89	eLatrine: Lessons Learned from the Development of a Low-Tech MFC Based on Cardboard Electrodes for the Treatment of Human Feces. Journal of the Electrochemical Society, 2017, 164, H3065-H3072.	1.3	20
90	Synthesis of tungsten carbide nanopowder via submerged discharge method. Journal of Nanoparticle Research, 2008, 10, 881-886.	0.8	19

#	Article	IF	CITATIONS
91	Integrating Electrochemistry Into Bioreactors: Effect of the Upgrade Kit on Mass Transfer, Mixing Time and Sterilizability. Frontiers in Energy Research, 2019, 7, .	1.2	18
92	Electrochemical impedance spectroscopy on biofilm electrodes – conclusive or euphonious?. Current Opinion in Electrochemistry, 2021, 29, 100757.	2.5	18
93	Estimating the Energy Content of Wastewater Using Combustion Calorimetry and Different Drying Processes. Frontiers in Energy Research, 2017, 5, .	1.2	17
94	Determining incremental coulombic efficiency and physiological parameters of early stage Geobacter spp. enrichment biofilms. PLoS ONE, 2020, 15, e0234077.	1.1	17
95	Electrochemically produced hydrogen bubble probes for gas evolution kinetics and force spectroscopy. Electrochemistry Communications, 2012, 24, 21-24.	2.3	16
96	Microbiome-based carboxylic acids production: from serum bottles to bioreactors. RSC Advances, 2017, 7, 15362-15371.	1.7	15
97	Reactors for Microbial Electrobiotechnology. Advances in Biochemical Engineering/Biotechnology, 2018, 167, 231-271.	0.6	15
98	Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production. Microorganisms, 2020, 8, 1959.	1.6	15
99	Enhanced Activity of Nonâ€Noble Metal Electrocatalysts for the Oxygen Reduction Reaction Using Low Temperature Plasma Treatment. Plasma Processes and Polymers, 2011, 8, 914-922.	1.6	14
100	Electrochemical characterization of bed electrodes using voltammetry of single granules. Electrochemistry Communications, 2018, 90, 78-82.	2.3	14
101	Crystal Structure of Dihydro-Heme d1 Dehydrogenase NirN from Pseudomonas aeruginosa Reveals Amino Acid Residues Essential for Catalysis. Journal of Molecular Biology, 2019, 431, 3246-3260.	2.0	14
102	Electrifying biotrickling filters for the treatment of aquaponics wastewater. Bioresource Technology, 2021, 319, 124221.	4.8	14
103	Platinized Titanium as Alternative Costâ€Effective Anode for Efficient Kolbe Electrolysis in Aqueous Electrolyte Solutions. ChemSusChem, 2021, 14, 3097-3109.	3.6	14
104	Insufficient oxygen diffusion leads to distortions of microbial growth parameters assessed by isothermal microcalorimetry. RSC Advances, 2014, 4, 32730-32737.	1.7	13
105	Deterioration of Aqueous <i>nâ€</i> Octanoate Electrolysis with Electrolytic Conductivity Collapse Caused by the Formation of <i>n</i> â€Octanoic Acid/ <i>n</i> â€Octanoate Agglomerates. ChemElectroChem, 2017, 4, 1378-1389.	1.7	13
106	Availability of Hydrogen Shapes the Microbial Abundance in Biofilm Anodes based on <i>Geobacter</i> Enrichment. ChemElectroChem, 2020, 7, 3720-3724.	1.7	13
107	How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross‣aboratory Study. ChemSusChem, 2021, 14, 2313-2330.	3.6	13
108	In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy. PLoS ONE, 2015, 10, e0145871.	1.1	12

#	Article	IF	CITATIONS
109	Combining hydrogen evolution and corrosion data - A case study on the economic viability of selected metal cathodes in microbial electrolysis cells. Journal of Power Sources, 2017, 356, 473-483.	4.0	12
110	Bed electrodes in microbial electrochemistry: setup, operation and characterization. ChemTexts, 2019, 5, 1.	1.0	12
111	Deciphering the fate of sulfate in one- and two-chamber bioelectrochemical systems. Electrochimica Acta, 2022, 408, 139942.	2.6	12
112	Modeling Microbial Electrosynthesis. Advances in Biochemical Engineering/Biotechnology, 2017, 167, 273-325.	0.6	11
113	Microbial electrochemical technologies: maturing but not mature. Microbial Biotechnology, 2018, 11, 18-19.	2.0	11
114	Elektrobioraffinerien: Synergien zwischen elektrochemischen und mikrobiologischen Stoffumwandlungen nutzbar machen. Angewandte Chemie, 2018, 130, 10168-10175.	1.6	11
115	Die Chemie bei Breaking Bad. Chemie in Unserer Zeit, 2013, 47, 214-221.	0.1	10
116	Electrification of Biotechnology: Quo Vadis?. Advances in Biochemical Engineering/Biotechnology, 2018, 167, 395-411.	0.6	10
117	Engineering electrochemical CO 2 reduction to formate under bioprocessâ€compatible conditions to bioreactor scale. ChemElectroChem, 2019, 6, 3731-3735.	1.7	10
118	Simultaneous removal of hydrocarbons and sulfate from groundwater using a "bioelectric well― Electrochimica Acta, 2021, 388, 138636.	2.6	10
119	Metabolic Efficiency of Geobacter sulfurreducens Growing on Anodes with Different Redox Potentials. Current Microbiology, 2014, 68, 763-768.	1.0	8
120	Suitability of fecal sludge from composting toilets as feedstock for carbonization. Journal of Water Sanitation and Hygiene for Development, 2019, 9, 616-626.	0.7	8
121	Investigating Community Dynamics and Performance During Microbial Electrochemical Degradation of Whey. ChemElectroChem, 2020, 7, 989-997.	1.7	8
122	Electroactive microorganisms in mouse feces. Electrochimica Acta, 2021, 365, 137326.	2.6	8
123	Electrification of Biotechnology: Status quo. Advances in Biochemical Engineering/Biotechnology, 2017, 167, 1-14.	0.6	7
124	Hydrogen from Water is more than a Fuel: Hydrogenations and Hydrodeoxygenations for a Biobased Economy. Chemical Record, 2021, 21, 2277-2289.	2.9	7
125	Evaluating the Feasibility of Microbial Electrosynthesis Based on <i>Gluconobacter oxydans</i> . ChemElectroChem, 2016, 3, 1337-1346.	1.7	6
126	Electron harvest and treatment of amendment free municipal wastewater using microbial anodes: A case study. Journal of Power Sources, 2017, 356, 319-323.	4.0	6

#	Article	IF	CITATIONS
127	Responseâ€Surfaceâ€Optimized and Scaledâ€Up Microbial Electrosynthesis of Chiral Alcohols. ChemSusChem, 2020, 13, 1808-1816.	3.6	6
128	Benefits of Age–Improved Resistance of Mature Electroactive Biofilm Anodes in Anaerobic Digestion. Environmental Science & Technology, 2021, 55, 8258-8266.	4.6	6
129	Redox Potential Heterogeneity in Fixedâ€Bed Electrodes Leads to Microbial Stratification and Inhomogeneous Performance. ChemSusChem, 2021, 14, 1155-1165.	3.6	6
130	Functional stability of novel homogeneous and heterogeneous cation exchange membranes for abiotic and microbial electrochemical technologies. Journal of Membrane Science, 2022, 658, 120705.	4.1	6
131	Monitoring stratification of anode biofilms in bioelectrochemical laminar flow reactors using flow cytometry. Environmental Science and Ecotechnology, 2020, 4, 100062.	6.7	5
132	Syntrophy drives the microbial electrochemical oxidation of toluene in a continuous-flow "bioelectric well― Journal of Environmental Chemical Engineering, 2022, 10, 107799.	3.3	5
133	First settlers persist. Joule, 2021, 5, 1316-1319.	11.7	4
134	Precious Data from Tiny Samples: Revealing the Correlation Between Energy Content and the Chemical Oxygen Demand of Municipal Wastewater by Micro-Bomb Combustion Calorimetry. Frontiers in Energy Research, 2021, 9, .	1.2	4
135	Electrochemical Microwell Plate to Study Electroactive Microorganisms in Parallel and Real-Time. Frontiers in Bioengineering and Biotechnology, 2021, 9, 821734.	2.0	4
136	Electrochemical and Microbial Dissection of Electrified Biotrickling Filters. Frontiers in Microbiology, 2022, 13, .	1.5	4
137	Wie Mikroorganismen und Elektroden interagieren. Nachrichten Aus Der Chemie, 2016, 64, 732-737.	0.0	3
138	Making sense of gas measurements: quantification of multicomponent gas mixtures in biological and chemical laboratory experiments. ChemTexts, 2021, 7, 1.	1.0	3
139	Keeping intermediates on the track: towards tailored metabolons for bioelectrocatalysis. Biofuels, 2010, 1, 677-680.	1.4	2
140	Resting Escherichia coli as Chassis for Microbial Electrosynthesis: Production of Chiral Alcohols. ChemSusChem, 2019, 12, 1482-1482.	3.6	2
141	Labelâ€Free Fourâ€Dimensional Visualization of Anaerobically Growing Electroactive Biofilms. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 737-741.	1.1	2
142	Impact of Surface Properties of Porous SiOCâ€Based Materials on the Performance of <i>Geobacter</i> Biofilm Anodes. ChemElectroChem, 2021, 8, 850-857.	1.7	2
143	How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross‣aboratory Study. ChemSusChem, 2021, 14, 2267.	3.6	2

#	Article	IF	CITATIONS
145	(Science for Solving Society's Problems Challenge Grant Winner) eLatrines: Development of a Fully Cardboard based Microbial Fuel Cell for Pit Latrines. ECS Meeting Abstracts, 2016, , .	0.0	1
146	Thickness and roughness of transparent gold-palladium anodes have no impact on growth kinetics and yield coefficients of early-stage Geobacter sulfurreducens biofilms. Bioelectrochemistry, 2022, 144, 108043.	2.4	1
147	Editorial to Special Issue of <i>Engineering in Life Sciences</i> Emerging biotechnologies viewed by emerging bioengineers (EBEB). Engineering in Life Sciences, 2017, 17, 4-5.	2.0	0
148	Das neue Wissenschaftszeitvertragsgesetz: Intention und Status quo!?. BioSpektrum, 2017, 23, 119-119.	0.0	0
149	Trendbericht Biochemie Teil 5: Biochemie unter Strom. Nachrichten Aus Der Chemie, 2019, 67, 64-66.	0.0	0
150	Availability of Hydrogen Shapes the Microbial Abundance in Biofilm Anodes based on Geobacter Enrichment. ChemElectroChem, 2020, 7, 3683-3683.	1.7	0
151	Microbial Electrochemical Oxidation of Anaerobic Digestion Effluent From Treating HTC Process Water. Frontiers in Chemical Engineering, 2021, 3, .	1.3	0
152	Chapter 10 Electroautotrophs: feeding microbes with current for CO ₂ fixation. , 2021, , 277-296.		0
153	Acetate Detection with a Living Biosensor – The Capability of Anodic Biofilms. ECS Meeting Abstracts, 2016, , .	0.0	0
154	Microbiomes and Electroorganic Synthesis – A Fruitful Liaison for the Production of Renewable Chemicals?!. Chemie-Ingenieur-Technik, 2016, 88, 1252-1252.	0.4	0
155	Functional Stability of Novel Homogeneous and Heterogeneous Cation Exchange Membranes for Abiotic and Microbial Electrochemical Technologies. SSRN Electronic Journal, 0, , .	0.4	0
156	Toward Real-Time Determination of Yield Coefficients of Early-Stage Electroactive Biofilms by Optical Microscopy. Frontiers in Energy Research, 0, 10, .	1.2	0