Christa E MÃ¹/₄ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2400977/publications.pdf

Version: 2024-02-01

465 papers 23,532 citations

80 h-index 121 g-index

482 all docs 482 docs citations

times ranked

482

19630 citing authors

#	Article	IF	CITATIONS
1	International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors—An Update. Pharmacological Reviews, 2011, 63, 1-34.	16.0	1,135
2	Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1290-1308.	2.6	375
3	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5 . 4	337
4	Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature, 2014, 509, 115-118.	27.8	330
5	Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature, 2014, 516, 395-399.	27.8	316
6	Anthraquinones As Pharmacological Tools and Drugs. Medicinal Research Reviews, 2016, 36, 705-748.	10.5	300
7	The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications, 2015, 6, 10156.	12.8	282
8	Agonist-bound structure of the human P2Y12 receptor. Nature, 2014, 509, 119-122.	27.8	279
9	Caffeine acts through neuronal adenosine A _{2A} receptors to prevent mood and memory dysfunction triggered by chronic stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7833-7838.	7.1	248
10	CD39/ENTPD1 Expression by CD4+Foxp3+ Regulatory T Cells Promotes Hepatic Metastatic Tumor Growth in Mice. Gastroenterology, 2010, 139, 1030-1040.	1.3	240
11	Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology, 2016, 104, 31-49.	4.1	213
12	CD39/Ectonucleoside Triphosphate Diphosphohydrolase 1 Provides Myocardial Protection During Cardiac Ischemia/Reperfusion Injury. Circulation, 2007, 116, 1784-1794.	1.6	192
13	Involvement of Adenosine A1 and A2A Receptors in the Motor Effects of Caffeine after its Acute and Chronic Administration. Neuropsychopharmacology, 2003, 28, 1281-1291.	5.4	177
14	Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson's disease., 2011, 132, 280-299.		170
15	Structure–activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorganic and Medicinal Chemistry, 2011, 19, 2090-2102.	3.0	169
16	Polyoxometalatesâ€"a new class of potent ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5943-5947.	2.2	167
17	Dopaminergic Modulation of Effort-Related Choice Behavior as Assessed by a Progressive Ratio Chow Feeding Choice Task: Pharmacological Studies and the Role of Individual Differences. PLoS ONE, 2012, 7, e47934.	2.5	166
18	Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. British Journal of Pharmacology, 2021, 178, 489-514.	5 . 4	165

#	Article	lF	Citations
19	Crystal Structure of the Human Ecto-5′-Nucleotidase (CD73): Insights into the Regulation of Purinergic Signaling. Structure, 2012, 20, 2161-2173.	3.3	164
20	Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology. Neurobiology of Aging, 2014, 35, 2079-2090.	3.1	163
21	Adenosine A _{2A} receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Annals of Neurology, 2008, 63, 338-346.	5.3	159
22	Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology, 2008, 54, 815-823.	4.1	154
23	Update of P2Y receptor pharmacology: IUPHAR Review 27. British Journal of Pharmacology, 2020, 177, 2413-2433.	5.4	151
24	Adenosine Receptor Antagonists Including Caffeine Alter Fetal Brain Development in Mice. Science Translational Medicine, 2013, 5, 197ra104.	12.4	148
25	Ecto-5'-Nucleotidase (CD73)-Mediated Formation of Adenosine Is Critical for the Striatal Adenosine A2A Receptor Functions. Journal of Neuroscience, 2013, 33, 11390-11399.	3.6	146
26	P2Y2 and $Gq/G11$ control blood pressure by mediating endothelial mechanotransduction. Journal of Clinical Investigation, 2015, 125, 3077-3086.	8.2	145
27	A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Molecular Psychiatry, 2016, 21, 97-107.	7.9	145
28	Antinociceptive Effects of Novel A2B Adenosine Receptor Antagonists. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 358-366.	2.5	144
29	Lignans Isolated from Valerian:  Identification and Characterization of a New Olivil Derivative with Partial Agonistic Activity at A1 Adenosine Receptors. Journal of Natural Products, 2002, 65, 1479-1485.	3.0	143
30	1-Alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: Development and Characterization of Adenosine A ₂₈ Receptor Antagonists and a New Radioligand with Subnanomolar Affinity and Subtype Specificity. Journal of Medicinal Chemistry, 2009, 52, 3994-4006.	6.4	143
31	Contribution of Eâ€NTPDasel (CD39) to renal protection from ischemiaâ€reperfusion injury. FASEB Journal, 2007, 21, 2863-2873.	0.5	140
32	Multigram-Scale Syntheses, Stability, and Photoreactions of A2AAdenosine Receptor Antagonists with 8-Styrylxanthine Structure:Â Potential Drugs for Parkinson's Disease. Journal of Organic Chemistry, 2004, 69, 3308-3318.	3.2	137
33	Identification by Site-directed Mutagenesis of Residues Involved in Ligand Recognition and Activation of the Human A3 Adenosine Receptor. Journal of Biological Chemistry, 2002, 277, 19056-19063.	3.4	134
34	1,8-Disubstituted Xanthine Derivatives:  Synthesis of Potent A2B-Selective Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2002, 45, 1500-1510.	6.4	134
35	P2 Receptors Activated by Uracil Nucleotides - An Update. Current Medicinal Chemistry, 2006, 13, 289-312.	2.4	134
36	Polyoxometalates as Versatile Enzyme Inhibitors. European Journal of Inorganic Chemistry, 2013, 2013, 1585-1594.	2.0	132

#	Article	IF	CITATIONS
37	Water-Soluble Phosphate Prodrugs of 1-Propargyl-8-styrylxanthine Derivatives, A2A-Selective Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2000, 43, 440-448.	6.4	129
38	Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Molecular Psychiatry, 2020, 25, 1876-1900.	7.9	129
39	Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A2A and dopamine D2 receptors. Neuroscience Letters, 2002, 324, 154-158.	2.1	124
40	Adenosine A2A receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation. Molecular Psychiatry, 2013, 18, 320-331.	7.9	124
41	Adenosine/dopamine interaction: implications for the treatment of Parkinson's disease. Parkinsonism and Related Disorders, 2001, 7, 235-241.	2.2	118
42	A Dual Role of Adenosine A _{2A} Receptors in 3-Nitropropionic Acid-Induced Striatal Lesions: Implications for the Neuroprotective Potential of A _{2A} Antagonists. Journal of Neuroscience, 2003, 23, 5361-5369.	3.6	118
43	Adenosine receptor agonists: from basic medicinal chemistry to clinical development. Expert Opinion on Emerging Drugs, 2003, 8, 537-576.	2.4	117
44	Adenosine receptors and their modulators. Pharmaceutica Acta Helvetiae, 1993, 68, 77-111.	1.2	115
45	Caffeine and an adenosine A _{2A} receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. Journal of Neurochemistry, 2010, 112, 453-462.	3.9	115
46	Effort-Related Motivational Effects of the VMAT-2 Inhibitor Tetrabenazine: Implications for Animal Models of the Motivational Symptoms of Depression. Journal of Neuroscience, 2013, 33, 19120-19130.	3.6	114
47	Selective Activation of Adenosine A _{2A} Receptors on Immune Cells by a CD73-Dependent Prodrug Suppresses Joint Inflammation in Experimental Rheumatoid Arthritis. Science Translational Medicine, 2012, 4, 146ra108.	12.4	111
48	Decoding Signaling and Function of the Orphan G Protein–Coupled Receptor GPR17 with a Small-Molecule Agonist. Science Signaling, 2013, 6, ra93.	3.6	111
49	Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signalling, 2015, 11, 389-407.	2.2	111
50	Prodrug Approaches for Enhancing the Bioavailability of Drugs with Low Solubility. Chemistry and Biodiversity, 2009, 6, 2071-2083.	2.1	110
51	α,β-Methylene-ADP (AOPCP) Derivatives and Analogues: Development of Potent and Selective <1>ecto-5′-Nucleotidase (CD73) Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 6248-6263.	6.4	110
52	Synthesis and Structureâ^'Activity Relationships of Uracil Nucleotide Derivatives and Analogues as Agonists at Human P2Y2, P2Y4, and P2Y6 Receptors. Journal of Medicinal Chemistry, 2006, 49, 7076-7087.	6.4	109
53	Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice. Neuropharmacology, 2012, 62, 2068-2077.	4.1	108
54	Xanthines as Adenosine Receptor Antagonists. Handbook of Experimental Pharmacology, 2011, , 151-199.	1.8	107

#	Article	IF	CITATIONS
55	Polyoxometalatesâ€"Potent and selective ecto-nucleotidase inhibitors. Biochemical Pharmacology, 2015, 93, 171-181.	4.4	107
56	The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology, 2009, 204, 103-112.	3.1	105
57	Medicinal Chemistry of Adenosine A3 Receptor Ligands. Current Topics in Medicinal Chemistry, 2003, 3, 445-462.	2.1	104
58	Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors. Neuroscience, 2010, 166, 1056-1067.	2.3	103
59	Catalepsy induced by a blockade of dopamine D1or D2receptors was reversed by a concomitant blockade of adenosine A2Areceptors in the caudate-putamen of rats. European Journal of Neuroscience, 2001, 14, 1287-1293.	2.6	100
60	N-Substituted Phenoxazine and Acridone Derivatives: Structure–Activity Relationships of Potent P2X4 Receptor Antagonists. Journal of Medicinal Chemistry, 2012, 55, 9576-9588.	6.4	100
61	Preparation, Properties, Reactions, and Adenosine Receptor Affinities of Sulfophenylxanthine Nitrophenyl Esters:Â Toward the Development of Sulfonic Acid Prodrugs with Peroral Bioavailability. Journal of Medicinal Chemistry, 2004, 47, 1031-1043.	6.4	97
62	Adenosine A2A receptor blockade prevents memory dysfunction caused by \hat{l}^2 -amyloid peptides but not by scopolamine or MK-801. Experimental Neurology, 2008, 210, 776-781.	4.1	97
63	Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicology, 2016, 34, 329-343.	2.4	96
64	Targeting the Main Protease of SARSâ€CoVâ€2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors. Angewandte Chemie - International Edition, 2021, 60, 10423-10429.	13.8	95
65	Adenosine regulates CD8 Tâ€cell priming by inhibition of membraneâ€proximal Tâ€cell receptor signalling. Immunology, 2009, 128, e728-37.	4.4	94
66	Adenosine A2A receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing. Psychopharmacology, 2007, 191, 579-586.	3.1	93
67	[3H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([3H]PSB-11), a Novel High-Affinity Antagonist Radioligand for Human A3 Adenosine Receptors. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 501-503.	2.2	92
68	Effort-related motivational effects of the pro-inflammatory cytokine interleukin 1-beta: studies with the concurrent fixed ratio 5/ chow feeding choice task. Psychopharmacology, 2014, 231, 727-736.	3.1	91
69	Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Research, 2006, 1077, 67-80.	2.2	90
70	Adenosine Receptor Ligands-Recent Developments Part I. Agonists. Current Medicinal Chemistry, 2000, 7, 1269-1288.	2.4	89
71	High-Affinity, Non-Nucleotide-Derived Competitive Antagonists of Platelet P2Y ₁₂ Receptors. Journal of Medicinal Chemistry, 2009, 52, 3784-3793.	6.4	89
72	Development of Potent and Selective Inhibitors of <i>ecto</i> -5′-Nucleotidase Based on an Anthraquinone Scaffold. Journal of Medicinal Chemistry, 2010, 53, 2076-2086.	6.4	88

#	Article	IF	CITATIONS
73	Pharmacological evaluation of new constituents of "Spice†synthetic cannabinoids based on indole, indazole, benzimidazole and carbazole scaffolds. Forensic Toxicology, 2018, 36, 385-403.	2.4	88
74	Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A ₁ and A _{2A} subtype receptor agonists. British Journal of Pharmacology, 2005, 144, 642-650.	5.4	87
75	Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum. Experimental Neurology, 2012, 233, 193-204.	4.1	84
76	The VMAT-2 inhibitor tetrabenazine alters effort-related decision making as measured by the T-maze barrier choice task: reversal with the adenosine A2A antagonist MSX-3 and the catecholamine uptake blocker bupropion. Psychopharmacology, 2015, 232, 1313-1323.	3.1	84
77	l-DOPA-treatment in primates disrupts the expression of A2A adenosine–CB1 cannabinoid–D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology, 2014, 79, 90-100.	4.1	83
78	Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. Neurobiology of Disease, 2015, 79, 70-80.	4.4	83
79	Recent Progress in the Development of Adenosine Receptor Ligands as Antiinflammatory Drugs. Current Topics in Medicinal Chemistry, 2006, 6, 1375-1399.	2.1	83
80	Synthesis and Structureâ^'Activity Relationships of 3,7-Dimethyl-1-propargylxanthine Derivatives, A2A-Selective Adenosine Receptor Antagonistsâ€. Journal of Medicinal Chemistry, 1997, 40, 4396-4405.	6.4	82
81	Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2Areceptors in dopamine D2receptor regulation in the rat dopamine-denervated striatum. European Journal of Neuroscience, 2000, 12, 4033-4037.	2.6	82
82	Allosteric Modulation of A3 Adenosine Receptors by a Series of 3-(2-Pyridinyl)isoquinoline Derivatives. Molecular Pharmacology, 2001, 60, 1057-1063.	2.3	82
83	The VMAT-2 Inhibitor Tetrabenazine Affects Effort-Related Decision Making in a Progressive Ratio/Chow Feeding Choice Task: Reversal with Antidepressant Drugs. PLoS ONE, 2014, 9, e99320.	2.5	82
84	Imidazo[2,1-i]purin-5-ones and Related Tricyclic Water-Soluble Purine Derivatives: Potent A2A- and A3-Adenosine Receptor Antagonistsâ€. Journal of Medicinal Chemistry, 2002, 45, 3440-3450.	6.4	81
85	Diindolylmethane Derivatives: Potent Agonists of the Immunostimulatory Orphan G Protein-Coupled Receptor GPR84. Journal of Medicinal Chemistry, 2017, 60, 3636-3655.	6.4	81
86	Elucidating the active \hat{l} -opioid receptor crystal structure with peptide and small-molecule agonists. Science Advances, 2019, 5, eaax9115.	10.3	81
87	Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes — a new, selective antagonist radioligand for A2A adenosine receptors. European Journal of Pharmaceutical Sciences, 2000, 10, 259-265.	4.0	80
88	Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors. MedChemComm, 2017, 8, 823-840.	3.4	80
89	Blocking Striatal Adenosine A2A Receptors: A New Strategy for Basal Ganglia Disorders. Recent Patents on CNS Drug Discovery, 2007, 2, 1-21.	0.9	79
90	Dual Targeting of Adenosine A _{2A} Receptors and Monoamine Oxidase B by 4 <i>H</i> -3,1-Benzothiazin-4-ones. Journal of Medicinal Chemistry, 2013, 56, 4580-4596.	6.4	78

#	Article	IF	Citations
91	Advances in immobilized enzyme microbioreactors in capillary electrophoresis. Analyst, The, 2013, 138, 3104.	3.5	77
92	Central P2Y12 receptor blockade alleviates inflammatory and neuropathic pain and cytokine production in rodents. Neurobiology of Disease, 2014, 70, 162-178.	4.4	77
93	Indazole- and Indole-5-carboxamides: Selective and Reversible Monoamine Oxidase B Inhibitors with Subnanomolar Potency. Journal of Medicinal Chemistry, 2014, 57, 6679-6703.	6.4	77
94	l-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies. Experimental Neurology, 2014, 253, 180-191.	4.1	77
95	Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget, 2018, 9, 13593-13611.	1.8	77
96	Structureâ "Activity Relationships at Human and Rat A2BAdenosine Receptors of Xanthine Derivatives Substituted at the 1-, 3-, 7-, and 8-Positions. Journal of Medicinal Chemistry, 2002, 45, 2131-2138.	6.4	76
97	3CL Protease Inhibitors with an Electrophilic Arylketone Moiety as Anti-SARS-CoV-2 Agents. Journal of Medicinal Chemistry, 2022, 65, 2926-2939.	6.4	75
98	Magnolia Extract, Magnolol, and Metabolites: Activation of Cannabinoid CB ₂ Receptors and Blockade of the Related GPR55. ACS Medicinal Chemistry Letters, 2013, 4, 41-45.	2.8	74
99	Tremorolytic effects of adenosine A2A antagonists: implications for parkinsonism. Frontiers in Bioscience - Landmark, 2008, Volume, 3594.	3.0	74
100	Key Determinants of Nucleotide-Activated G Protein-Coupled P2Y ₂ Receptor Function Revealed by Chemical and Pharmacological Experiments, Mutagenesis and Homology Modeling. Journal of Medicinal Chemistry, 2009, 52, 2762-2775.	6.4	73
101	A1-Adenosine receptor antagonists. Expert Opinion on Therapeutic Patents, 1997, 7, 419-440.	5.0	72
102	Interactions of valerian extracts and a fixed valerian–hop extract combination with adenosine receptors. Life Sciences, 2002, 71, 1939-1949.	4.3	72
103	A capillary electrophoresis method for the characterization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and the analysis of inhibitors by in-capillary enzymatic microreaction. Purinergic Signalling, 2005, 1, 349-358.	2.2	72
104	Rapid and Efficient Microwave-Assisted Copper(0)-Catalyzed Ullmann Coupling Reaction:Â General Access to Anilinoanthraquinone Derivatives. Organic Letters, 2007, 9, 1271-1274.	4.6	72
105	Beneficial Effect of a Selective Adenosine A2A Receptor Antagonist in the APPswe/PS1dE9 Mouse Model of Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 235.	2.9	72
106	Cardiac myocyte–secreted cAMP exerts paracrine action via adenosine receptor activation. Journal of Clinical Investigation, 2014, 124, 5385-5397.	8.2	70
107	A detailed behavioral analysis of the acute motor effects of caffeine in the rat: involvement of adenosine A1 and A2A receptors. Psychopharmacology, 2005, 183, 154-162.	3.1	67
108	A highly sensitive CEâ€UV method with dynamic coating of silicaâ€fused capillaries for monitoring of nucleotide pyrophosphatase/phosphodiesterase reactions. Electrophoresis, 2008, 29, 3685-3693.	2.4	67

#	Article	IF	Citations
109	Effort-related motivational effects of the pro-inflammatory cytokine interleukin-6: pharmacological and neurochemical characterization. Psychopharmacology, 2016, 233, 3575-3586.	3.1	67
110	GPR55: A therapeutic target for Parkinson's disease?. Neuropharmacology, 2017, 125, 319-332.	4.1	67
111	International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacological Reviews, 2022, 74, 340-372.	16.0	67
112	Motor effects induced by a blockade of adenosine A2A receptors in the caudate-putamen. NeuroReport, 1998, 9, 1803-1806.	1.2	66
113	The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists. Psychopharmacology, 2009, 203, 489-499.	3.1	66
114	Coordination of capsule assembly and cell wall biosynthesis in Staphylococcus aureus. Nature Communications, 2019, 10, 1404.	12.8	66
115	CD73-mediated adenosine production by CD8 T cell-derived extracellular vesicles constitutes an intrinsic mechanism of immune suppression. Nature Communications, 2021, 12, 5911.	12.8	66
116	Synthesis and Structure-Activity Relationships of Deazaxanthines: Analogs of Potent A1- and A2-Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 1994, 37, 1526-1534.	6.4	64
117	Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases). Purinergic Signalling, 2009, 5, 91-106.	2.2	64
118	Structural Mapping of Adenosine Receptor Mutations: Ligand Binding and Signaling Mechanisms. Trends in Pharmacological Sciences, 2018, 39, 75-89.	8.7	64
119	Bioactive Pyridoacridine Alkaloids from the Micronesian SpongeOceanapiasp Journal of Natural Products, 1998, 61, 301-305.	3.0	63
120	Nucleoside-5′-monophosphates as Prodrugs of Adenosine A _{2A} Receptor Agonists Activated by ecto-5′-Nucleotidaseâ€Contribution to celebrate the 100th anniversary of the Division of Medicinal Chemistry of the American Chemical Society Journal of Medicinal Chemistry, 2009, 52, 7669-7677.	6.4	63
121	Discovery of Potent Competitive Antagonists and Positive Modulators of the P2X2 Receptor. Journal of Medicinal Chemistry, 2011, 54, 817-830.	6.4	63
122	Caffeine Analogs: Structure-Activity Relationships at Adenosine Receptors. Pharmacology, 1991, 42, 309-321.	2.2	62
123	Combinatorial synthesis of anilinoanthraquinone derivatives and evaluation as non-nucleotide-derived P2Y2 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 223-227.	2.2	62
124	Allosteric modulators of rhodopsin-like G protein-coupled receptors: Opportunities in drug development., 2012, 135, 292-315.		62
125	Imidazopyridine- and Purine-Thioacetamide Derivatives: Potent Inhibitors of Nucleotide Pyrophosphatase/Phosphodiesterase 1 (NPP1). Journal of Medicinal Chemistry, 2014, 57, 10080-10100.	6.4	62
126	Synthesis and pharmacology of pyrido [2,3-d] pyrimidinediones bearing polar substituents as adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2006, 14, 2837-2849.	3.0	59

#	Article	IF	Citations
127	Interaction of New, Very Potent Non-Nucleotide Antagonists with Arg256 of the Human Platelet P2Y ₁₂ Receptor. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 648-655.	2.5	59
128	Mass spectrometric identification of modified urinary nucleosides used as potential biomedical markers by LC–ITMS coupling. Analytical and Bioanalytical Chemistry, 2005, 382, 1017-1026.	3.7	58
129	Dopamine/adenosine interactions related to locomotion and tremor in animal models: Possible relevance to parkinsonism. Parkinsonism and Related Disorders, 2008, 14, S130-S134.	2.2	57
130	Heterologous Expression, Biosynthetic Studies, and Ecological Function of the Selective Gqâ€Signaling Inhibitor FR900359. Angewandte Chemie - International Edition, 2018, 57, 836-840.	13.8	57
131	Identification of a Potent and Selective Cannabinoid CB ₁ Receptor Antagonist from <i>Auxarthron reticulatum</i> . ACS Medicinal Chemistry Letters, 2011, 2, 866-869.	2.8	56
132	Synthesis, characterization, and in vitro evaluation of the selective P2Y2 receptor antagonist AR-C118925. Purinergic Signalling, 2017, 13, 89-103.	2.2	56
133	Interaction of Purinergic P2X4 and P2X7 Receptor Subunits. Frontiers in Pharmacology, 2017, 8, 860.	3.5	56
134	P2-Pyrimidinergic Receptors and Their Ligands. Current Pharmaceutical Design, 2002, 8, 2353-2369.	1.9	55
135	The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Scientific Reports, 2016, 6, 31493.	3.3	55
136	A2A adenosine receptor antagonists - future drugs for Parkinson's disease?. Drugs of the Future, 2000, 25, 1043.	0.1	55
137	Differential allosteric modulation by amiloride analogues of agonist and antagonist binding at A1 and A3 adenosine receptors. Biochemical Pharmacology, 2003, 65, 525-534.	4.4	54
138	Improving Potency, Selectivity, and Water Solubility of Adenosineâ€A1 Receptor Antagonists: Xanthines Modified at Positionâ€3 and Related Pyrimido[1,2,3-cd]purinediones. ChemMedChem, 2006, 1, 891-902.	3.2	54
139	Enzymatic Properties of an Ecto-nucleoside Triphosphate Diphosphohydrolase from Legionella pneumophila. Journal of Biological Chemistry, 2008, 283, 12909-12918.	3.4	54
140	Effects of an adenosine A2Areceptor blockade in the nucleus accumbens on locomotion, feeding, and prepulse inhibition in rats. Synapse, 2003, 49, 279-286.	1.2	53
141	Synthesis and pharmacological evaluation of coumarin derivatives as cannabinoid receptor antagonists and inverse agonists. Bioorganic and Medicinal Chemistry, 2009, 17, 2842-2851.	3.0	53
142	Treatment with A2A receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage. Cell Death and Disease, 2017, 8, e3065-e3065.	6.3	53
143	Structure–Activity Relationship of Purine and Pyrimidine Nucleotides as Ecto-5′-Nucleotidase (CD73) Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 3677-3695.	6.4	53
144	Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine. Nature, 2022, 609, 361-368.	27.8	53

#	Article	IF	Citations
145	Synthesis of alkyl- and aryl-amino-substituted anthraquinone derivatives by microwave-assisted copper(0)-catalyzed Ullmann coupling reactions. Nature Protocols, 2010, 5, 945-953.	12.0	52
146	Benzothiazinones: A Novel Class of Adenosine Receptor Antagonists Structurally Unrelated to Xanthine and Adenine Derivatives. Journal of Medicinal Chemistry, 2012, 55, 3331-3341.	6.4	52
147	2-Phenylimidazo[2,1-i]purin-5-ones Structure–Activity relationships and characterization of potent and selective inverse agonists at Human A3 adenosine receptors. Bioorganic and Medicinal Chemistry, 2003, 11, 347-356.	3.0	51
148	A New Synthesis of Sulfonamides by Aminolysis ofp-Nitrophenylsulfonates Yielding Potent and Selective Adenosine A2BReceptor Antagonists. Journal of Medicinal Chemistry, 2006, 49, 4384-4391.	6.4	50
149	Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 65-76.	3.0	50
150	Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist. Addiction Biology, 2011, 16, 405-415.	2.6	50
151	Antagonists for the Orphan G-Protein-Coupled Receptor GPR55 Based on a Coumarin Scaffold. Journal of Medicinal Chemistry, 2013, 56, 4798-4810.	6.4	50
152	Targeted inhibition of G $<$ sub $>$ q $<$ /sub $>$ signaling induces airway relaxation in mouse models of asthma. Science Translational Medicine, 2017, 9, .	12.4	50
153	7-Deazaadenines Bearing Polar Substituents:  Structureâ^'Activity Relationships of New A1 and A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2000, 43, 4636-4646.	6.4	49
154	Extracellular NAD+ induces a rise in [Ca2+]i in activated human monocytes via engagement of P2Y1 and P2Y11 receptors. Cell Calcium, 2009, 46, 263-272.	2.4	49
155	BAY60-6583 Acts as a Partial Agonist at Adenosine A _{2B} Receptors. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 427-436.	2.5	49
156	P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus. Journal of the American Society of Nephrology: JASN, 2015, 26, 2978-2987.	6.1	49
157	Recent Developments in Adenosine A2A Receptor Ligands. Handbook of Experimental Pharmacology, 2009, , 59-98.	1.8	48
158	Novel Amino Acid Derived Natural Products from the Ascidian Atriolum robustum:  Identification and Pharmacological Characterization of a Unique Adenosine Derivative. Journal of Medicinal Chemistry, 2004, 47, 2243-2255.	6.4	47
159	Virtual Screening Identifies Novel Sulfonamide Inhibitors of <i>ecto</i> -5′-Nucleotidase. Journal of Medicinal Chemistry, 2012, 55, 6576-6581.	6.4	47
160	Competitive mode and site of interaction of ticagrelor at the human platelet P2Y12â€receptor. Journal of Thrombosis and Haemostasis, 2014, 12, 1898-1905.	3.8	47
161	Characterization of P2X4 receptor agonists and antagonists by calcium influx and radioligand binding studies. Biochemical Pharmacology, 2017, 125, 41-54.	4.4	47
162	Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases. Biochemical Pharmacology, 2018, 157, 169-179.	4.4	47

#	Article	IF	Citations
163	8-(Sulfostyryl)xanthines: water-soluble A2A-selective adenosine receptor antagonists11Preliminary results were presented at the International Symposium "Purines '96―in Milan, Italy; abstract published in Drug Dev. Res. 1996, 37, 112 Bioorganic and Medicinal Chemistry, 1998, 6, 707-719.	3.0	46
164	A novel receptor cross-talk between the ATP receptor P2Y2 and formyl peptide receptors reactivates desensitized neutrophils to produce superoxide. Experimental Cell Research, 2014, 323, 209-217.	2.6	46
165	Enabling role of adenosine A1 receptors in adenosine A2A receptor-mediated striatal expression of c-fos. European Journal of Neuroscience, 2003, 18, 296-302.	2.6	45
166	Interactions between adenosine and dopamine receptor antagonists with different selectivity profiles: Effects on locomotor activity. Behavioural Brain Research, 2010, 211, 148-155.	2.2	45
167	Structural Modifications of UMP, UDP, and UTP Leading to Subtype-Selective Agonists for P2Y ₂ , P2Y ₄ , and P2Y ₆ Receptors. Journal of Medicinal Chemistry, 2011, 54, 2878-2890.	6.4	45
168	Interaction of valerian extracts of different polarity with adenosine receptors: Identification of isovaltrate as an inverse agonist at A1 receptors. Biochemical Pharmacology, 2007, 73, 248-258.	4.4	44
169	Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists. Psychopharmacology, 2011, 216, 173-186.	3.1	44
170	GPCR structure and activation: an essential role for the first extracellular loop in activating the adenosine A _{2B} receptor. FASEB Journal, 2011, 25, 632-643.	0.5	44
171	The novel adenosine A2A antagonist prodrug MSX-4 is effective in animal models related to motivational and motor functions. Pharmacology Biochemistry and Behavior, 2012, 102, 477-487.	2.9	44
172	Understanding the Role of Adenosine A2AR Heteroreceptor Complexes in Neurodegeneration and Neuroinflammation. Frontiers in Neuroscience, 2018, 12, 43.	2.8	44
173	A1 adenosine receptors and their ligands: overview and recent developments. Il Farmaco, 2001, 56, 77-80.	0.9	43
174	Capillary electrophoresis-based nanoscale assays for monitoring ecto- $5\hat{a}$ \in 2-nucleotidase activity and inhibition in preparations of recombinant enzyme and melanoma cell membranes. Analytical Biochemistry, 2008, 373, 129-140.	2.4	43
175	Selective Nucleoside Triphosphate Diphosphohydrolase-2 (NTPDase2) Inhibitors: Nucleotide Mimetics Derived from Uridine-5′-carboxamide. Journal of Medicinal Chemistry, 2008, 51, 4518-4528.	6.4	43
176	Structureâ [^] Activity Relationships of Adenine and Deazaadenine Derivatives as Ligands for Adenine Receptors, a New Purinergic Receptor Family. Journal of Medicinal Chemistry, 2009, 52, 5974-5989.	6.4	43
177	Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. Journal of Computer-Aided Molecular Design, 2015, 29, 737-756.	2.9	42
178	Tools and drugs for uracil nucleotide-activated P2Y receptors., 2018, 190, 24-80.		42
179	Synthesis of 3-substituted 6-aminouracils. Tetrahedron Letters, 1991, 32, 6539-6540.	1.4	41
180	Involvement of adenosine A1 receptors in the discriminative-stimulus effects of caffeine in rats. Psychopharmacology, 2005, 179, 576-586.	3.1	41

#	Article	IF	Citations
181	Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX. Pharmacology Biochemistry and Behavior, 2010, 94, 561-569.	2.9	41
182	Shear stress modulates endothelial KLF2 through activation of P2X4. Purinergic Signalling, 2015, 11, 139-153.	2.2	41
183	Antithrombotic P2Y12 receptor antagonists: recent developments in drug discovery. Drug Discovery Today, 2019, 24, 325-333.	6.4	41
184	Flavonoids - novel lead compounds for the development of P2Y2receptor antagonists. Drug Development Research, 2003, 59, 72-81.	2.9	40
185	Development of Polar Adenosine A _{2A} Receptor Agonists for Inflammatory Bowel Disease: Synergism with A _{2B} Antagonists. ACS Medicinal Chemistry Letters, 2011, 2, 890-895.	2.8	40
186	A new, sensitive ecto-5′-nucleotidase assay for compound screening. Analytical Biochemistry, 2014, 446, 53-58.	2.4	40
187	Alkynyl–coumarinyl ethers as MAO-B inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 1916-1928.	3.0	40
188	Imidazo-thiazine, -diazinone and -diazepinone derivatives. Synthesis, structure and benzodiazepine receptor binding. European Journal of Medicinal Chemistry, 2001, 36, 407-419.	5.5	38
189	Fast, efficient capillary electrophoresis method for measuring nucleotide degradation and metabolism. Journal of Chromatography A, 2002, 952, 275-281.	3.7	38
190	Development of off-line and on-line capillary electrophoresis methods for the screening and characterization of adenosine kinase inhibitors and substrates. Electrophoresis, 2006, 27, 2505-2517.	2.4	38
191	Role of P2 purinergic receptors in synaptic transmission under normoxic and ischaemic conditions in the CA1 region of rat hippocampal slices. Purinergic Signalling, 2007, 3, 203-219.	2.2	38
192	Homology modelling of the human adenosine A2B receptor based on X-ray structures of bovine rhodopsin, the \hat{l}^2 2-adrenergic receptor and the human adenosine A2A receptor. Journal of Computer-Aided Molecular Design, 2009, 23, 807-28.	2.9	38
193	Ligand-Specific Binding and Activation of the Human Adenosine A _{2B} Receptor. Biochemistry, 2013, 52, 726-740.	2.5	38
194	The platelet P2Y12 receptor under normal and pathological conditions. Assessment with the radiolabeled selective antagonist [3H]PSB-0413. Purinergic Signalling, 2013, 9, 59-66.	2.2	38
195	Indoloditerpenes from a Marine-Derived Fungal Strain of <i>Dichotomomyces cejpii</i> with Antagonistic Activity at GPR18 and Cannabinoid Receptors. Journal of Natural Products, 2014, 77, 673-677.	3.0	38
196	Identification of aurintricarboxylic acid as a potent allosteric antagonist of P2X1 and P2X3 receptors. Neuropharmacology, 2019, 158, 107749.	4.1	38
197	Diabetes-induced Neuropathic Mechanical Hyperalgesia Depends on P2X4 Receptor Activation in Dorsal Root Ganglia. Neuroscience, 2019, 398, 158-170.	2.3	38
198	Dinosaur origin of egg color: oviraptors laid blue-green eggs. PeerJ, 2017, 5, e3706.	2.0	38

#	Article	IF	CITATIONS
199	8-Benzamidochromen-4-one-2-carboxylic Acids: Potent and Selective Agonists for the Orphan G Protein-Coupled Receptor GPR35. Journal of Medicinal Chemistry, 2013, 56, 5182-5197.	6.4	37
200	Carbamazepine derivatives with P2X4 receptor-blocking activity. Bioorganic and Medicinal Chemistry, 2014, 22, 1077-1088.	3.0	37
201	Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation. Neuropharmacology, 2017, 117, 316-327.	4.1	37
202	Structural characterization and pharmacological evaluation of the new synthetic cannabinoid CUMYLâ€PEGACLONE. Drug Testing and Analysis, 2018, 10, 597-603.	2.6	37
203	2-Substituted α,β-Methylene-ADP Derivatives: Potent Competitive Ecto-5′-nucleotidase (CD73) Inhibitors with Variable Binding Modes. Journal of Medicinal Chemistry, 2020, 63, 2941-2957.	6.4	37
204	Agonists and Antagonists for Purinergic Receptors. Methods in Molecular Biology, 2020, 2041, 45-64.	0.9	37
205	Medicinal Chemistry of P2X Receptors: Allosteric Modulators. Current Medicinal Chemistry, 2015, 22, 929-941.	2.4	37
206	Synthesis and biological activity of tricyclic aryloimidazo-, pyrimido-, and diazepinopurinediones. Bioorganic and Medicinal Chemistry, 2006, 14, 7258-7281.	3.0	36
207	The promiscuous ectonucleotidase NPP1: molecular insights into substrate binding and hydrolysis. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 603-614.	2.4	36
208	Substrate-Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors. Frontiers in Pharmacology, 2017, 8, 54.	3.5	36
209	Chiral Pyrrolo[2,3-d]pyrimidine and Pyrimido[4,5-b]indole Derivatives:Â Structureâ^'Activity Relationships of Potent, Highly Stereoselective A1-Adenosine Receptor Antagonistsâ€,‡. Journal of Medicinal Chemistry, 1996, 39, 2482-2491.	6.4	35
210	Phenylethyl-substituted pyrimido[2,1-f]purinediones and related compounds: Structure–activity relationships as adenosine A1 and A2A receptor ligands. Bioorganic and Medicinal Chemistry, 2007, 15, 6956-6974.	3.0	35
211	Synthesis and Properties of a New Water-Soluble Prodrug of the Adenosine A2A Receptor Antagonist MSX-2. Molecules, 2008, 13, 348-359.	3.8	35
212	The four cysteine residues in the second extracellular loop of the human adenosine A2B receptor: Role in ligand binding and receptor function. Biochemical Pharmacology, 2011, 82, 389-399.	4.4	35
213	Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets. PLoS Pathogens, 2016, 12, e1005585.	4.7	35
214	General Synthesis of Unsymmetrical 3,3′-(Aza)diindolylmethane Derivatives. Journal of Organic Chemistry, 2018, 83, 9902-9913.	3.2	35
215	A novel P2X2â€dependent purinergic mechanism of enteric gliosis in intestinal inflammation. EMBO Molecular Medicine, 2021, 13, e12724.	6.9	35
216	Small-Molecule Thioesters as SARS-CoV-2 Main Protease Inhibitors: Enzyme Inhibition, Structureâ€"Activity Relationships, Antiviral Activity, and X-ray Structure Determination. Journal of Medicinal Chemistry, 2022, 65, 9376-9395.	6.4	35

#	Article	IF	CITATIONS
217	N9-Benzyl-substituted 1,3-dimethyl- and 1,3-dipropyl-pyrimido $[2,1-f]$ purinediones: Synthesis and structure $\hat{a} \in ``activity relationships at adenosine A1 and A2A receptors. Bioorganic and Medicinal Chemistry, 2007, 15, 5003-5017.$	3.0	34
218	7-Alkyl-3-benzylcoumarins: A Versatile Scaffold for the Development of Potent and Selective Cannabinoid Receptor Agonists and Antagonists. Journal of Medicinal Chemistry, 2012, 55, 7967-7977.	6.4	34
219	P2Y2 receptor agonist with enhanced stability protects the heart from ischemic damage in vitro and in vivo. Purinergic Signalling, 2013, 9, 633-642.	2.2	34
220	The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors. Biochemical Pharmacology, 2013, 85, 1317-1329.	4.4	34
221	Potent Suppressive Effects of 1-Piperidinylimidazole Based Novel P2X7 Receptor Antagonists on Cancer Cell Migration and Invasion. Journal of Medicinal Chemistry, 2016, 59, 7410-7430.	6.4	34
222	New developments in A1 and A2 adenosine receptor antagonists. Pure and Applied Chemistry, 2001, 73, 1411-1420.	1.9	33
223	6-Bromo-8-(4-[³ H]methoxybenzamido)-4-oxo-4 <i>H</i> -chromene-2-carboxylic Acid: A Powerful Tool for Studying Orphan G Protein-Coupled Receptor GPR35. Journal of Medicinal Chemistry, 2013, 56, 7084-7099.	6.4	33
224	Development of Potent and Selective Antagonists for the UTP-Activated P2Y ₄ Receptor. Journal of Medicinal Chemistry, 2017, 60, 3020-3038.	6.4	33
225	Xâ€Ray Coâ€Crystal Structure Guides the Way to Subnanomolar Competitive Ectoâ€5′â€Nucleotidase (CD73) Inhibitors for Cancer Immunotherapy. Advanced Therapeutics, 2019, 2, 1900075.	3.2	33
226	Synthesis and preliminary evaluation of [3H]PSB-0413, a selective antagonist radioligand for platelet P2Y12 receptors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5450-5452.	2.2	32
227	Synthesis and biological activity of tricyclic cycloalkylimidazo-, pyrimido- and diazepinopurinediones. European Journal of Medicinal Chemistry, 2011, 46, 3590-3607.	5.5	32
228	Antiproliferative effects of selective adenosine receptor agonists and antagonists on human lymphocytes: evidence for receptor-independent mechanisms. Purinergic Signalling, 2013, 9, 351-365.	2.2	32
229	Thioesterase-mediated side chain transesterification generates potent Gq signaling inhibitor FR900359. Nature Communications, 2021, 12, 144.	12.8	32
230	The Natural Product Magnolol as a Lead Structure for the Development of Potent Cannabinoid Receptor Agonists. PLoS ONE, 2013, 8, e77739.	2.5	32
231	A New Versatile Synthesis of Xanthines with Variable Substituents in the 1-, 3-, 7- and 8-Positions. Synthesis, 1995, 1995, 1295-1299.	2.3	31
232	Evidence for the Functional Expression and Pharmacological Characterization of Adenine Receptors in Native Cells and Tissues. Molecular Pharmacology, 2005, 67, 955-964.	2.3	31
233	Cloning and Functional Expression of a Novel G _i Protein-Coupled Receptor for Adenine from Mouse Brain. Molecular Pharmacology, 2008, 73, 469-477.	2.3	31
234	Oral tremor induced by galantamine in rats: A model of the parkinsonian side effects of cholinomimetics used to treat Alzheimer's disease. Pharmacology Biochemistry and Behavior, 2011, 99, 414-422.	2.9	31

#	Article	IF	CITATIONS
235	Characterization of new G protein-coupled adenine receptors in mouse and hamster. Purinergic Signalling, 2013, 9, 415-426.	2.2	31
236	Effect of subtype-selective adenosine receptor antagonists on basal or haloperidol-regulated striatal function: Studies of exploratory locomotion and c-Fos immunoreactivity in outbred and A2AR KO mice. Behavioural Brain Research, 2013, 247, 217-226.	2.2	31
237	Bispidines for Dual Imaging. Chemistry - A European Journal, 2014, 20, 17011-17018.	3.3	31
238	Neuroprotective Potential of Adenosine A _{2A} and Cannabinoid CB ₁ Receptor Antagonists in an Animal Model of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2014, 73, 414-424.	1.7	31
239	Impact of inÂvivo chronic blockade of adenosine A2A receptors on the BDNF-mediated facilitation of LTP. Neuropharmacology, 2014, 83, 99-106.	4.1	31
240	Dual target strategy: combining distinct nonâ€dopaminergic treatments reduces neuronal cell loss and synergistically modulates <scp>l</scp> â€ <scp>DOPA</scp> â€induced rotational behavior in a rodent model of Parkinson's disease. Journal of Neurochemistry, 2015, 134, 740-747.	3.9	31
241	Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat. Psychopharmacology, 2011, 213, 69-79.	3.1	30
242	6-(Ar)Alkylamino-Substituted Uracil Derivatives: Lipid Mimetics with Potent Activity at the Orphan G Protein-Coupled Receptor 84 (GPR84). ACS Omega, 2018, 3, 3365-3383.	3.5	30
243	2-Amino-5-benzoyl-4-phenylthiazoles: Development of potent and selective adenosine A1 receptor antagonists. Bioorganic and Medicinal Chemistry, 2010, 18, 2195-2203.	3.0	29
244	1,3-Dialkyl-substituted tetrahydropyrimido[1,2-f]purine-2,4-diones as multiple target drugs for the potential treatment of neurodegenerative diseases. Bioorganic and Medicinal Chemistry, 2013, 21, 7435-7452.	3.0	29
245	Medicinal chemistry of P2 and adenosine receptors: Common scaffolds adapted for multiple targets. Biochemical Pharmacology, 2021, 187, 114311.	4.4	29
246	A group of cationic amphiphilic drugs activates MRGPRX2 and induces scratching behavior in mice. Journal of Allergy and Clinical Immunology, 2021, 148, 506-522.e8.	2.9	29
247	General Synthesis and Properties of 1-Monosubstituted Xanthines. Synthesis, 1993, 1993, 125-128.	2.3	28
248	Characterization of human and rodent native and recombinant adenosine A2B receptors by radioligand binding studies. Purinergic Signalling, 2006, 2, 559-571.	2.2	28
249	Catalyst-Free Microwave-Assisted Amination of 2-Chloro-5-nitrobenzoic Acid. Journal of Organic Chemistry, 2007, 72, 5908-5911.	3.2	28
250	Synthesis of uracil nucleotide analogs with a modified, acyclic ribose moiety as P2Y2 receptor antagonists. Bioorganic and Medicinal Chemistry, 2009, 17, 5071-5079.	3.0	28
251	Targeting renal purinergic signalling for the treatment of lithiumâ€induced nephrogenic diabetes insipidus. Acta Physiologica, 2015, 214, 176-188.	3.8	28
252	2â€Amino[1,2,4]triazolo[1,5 <i> </i>]quinazolines and Derived Novel Heterocycles: Syntheses and Structure–Activity Relationships of Potent Adenosine Receptor Antagonists. ChemMedChem, 2016, 11, 2272-2286.	3.2	28

#	Article	IF	CITATIONS
253	Versatile, convenient synthesis of pyrimido[1,2,3-cd]purinediones. Tetrahedron, 2003, 59, 47-54.	1.9	27
254	Enantiomerically enriched trans-diols from alkenes in one pot: a multicatalyst approach. Chemical Communications, 2012, 48, 2498.	4.1	27
255	Synthesis of BODIPY Derivatives Substituted with Various Bioconjugatable Linker Groups: A Construction Kit for Fluorescent Labeling of Receptor Ligands. Journal of Fluorescence, 2014, 24, 213-230.	2.5	27
256	Characterization of circulating microparticle-associated CD39 family ecto-nucleotidases in human plasma. Purinergic Signalling, 2014, 10, 611-618.	2.2	27
257	Characterization of non-olfactory GPCRs in human sperm with a focus on GPR18. Scientific Reports, 2016, 6, 32255.	3.3	27
258	Molecular Recognition of Agonists and Antagonists by the Nucleotide-Activated G Protein-Coupled P2Y ₂ Receptor. Journal of Medicinal Chemistry, 2017, 60, 8425-8440.	6.4	27
259	Applying Molecular Networking for the Detection of Natural Sources and Analogues of the Selective Gq Protein Inhibitor FR900359. Journal of Natural Products, 2018, 81, 1628-1635.	3.0	27
260	Impact of the aryl substituent kind and distance from pyrimido [2,1-f] purindiones on the adenosine receptor selectivity and antagonistic properties. European Journal of Medicinal Chemistry, 2003, 38, 397-402.	5.5	26
261	High-sensitivity capillary electrophoresis method for monitoring purine nucleoside phosphorylase and adenosine deaminase reactions by a reversed electrode polarity switching mode. Journal of Chromatography A, 2011, 1218, 4764-4771.	3.7	26
262	Chemistry of porphyrins in fossil plants and animals. RSC Advances, 2021, 11, 7552-7563.	3.6	26
263	Configurationally stable analogs of styrylxanthines as A2A adenosine receptor antagonist. European Journal of Medicinal Chemistry, 1997, 32, 709-719.	5.5	25
264	Chronic A2A antagonist treatment alleviates parkinsonian locomotor deficiency in MitoPark mice. Neurobiology of Disease, 2010, 40, 460-466.	4.4	25
265	Conditional neural knockout of the adenosine A2A receptor and pharmacological A2A antagonism reduce pilocarpine-induced tremulous jaw movements: Studies with a mouse model of parkinsonian tremor. European Neuropsychopharmacology, 2013, 23, 972-977.	0.7	25
266	Crystal structure of NTPDase2 in complex with the sulfoanthraquinone inhibitor PSB-071. Journal of Structural Biology, 2014, 185, 336-341.	2.8	25
267	Ethanol and Caffeine Effects on Social Interaction and Recognition in Mice: Involvement of Adenosine A2A and A1 Receptors. Frontiers in Behavioral Neuroscience, 2016, 10, 206.	2.0	25
268	Cyclopropane-Containing Fatty Acids from the Marine Bacterium Labrenzia sp. 011 with Antimicrobial and GPR84 Activity. Marine Drugs, 2018 , 16 , 369 .	4.6	25
269	Stimulation of calcium release by caffeine analogs in pheochromocytoma cells. Biochemical Pharmacology, 1993, 46, 1825-1829.	4.4	24
270	Bicyclic imidazole-4-one derivatives: a new class of antagonists for the orphan G protein-coupled receptors GPR18 and GPR55. MedChemComm, 2014, 5, 632-649.	3.4	24

#	Article	IF	CITATIONS
271	P2Y2 receptor modulates shear stress-induced cell alignment and actin stress fibers in human umbilical vein endothelial cells. Cellular and Molecular Life Sciences, 2017, 74, 731-746.	5.4	24
272	Synthesis and structure-activity relationships of quinolinone and quinoline-based P2X7 receptor antagonists and their anti-sphere formation activities in glioblastoma cells. European Journal of Medicinal Chemistry, 2018, 151, 462-481.	5.5	24
273	Fluorescent-Labeled Selective Adenosine A _{2B} Receptor Antagonist Enables Competition Binding Assay by Flow Cytometry. Journal of Medicinal Chemistry, 2018, 61, 4301-4316.	6.4	24
274	A2A and A2B adenosine receptors: The extracellular loop 2 determines high (A2A) or low affinity (A2B) for adenosine. Biochemical Pharmacology, 2020, 172, 113718.	4.4	24
275	Extracellular metabolism of nucleotides in neuroblastoma x glioma NG108-15 cells determined by capillary electrophoresis. Cellular and Molecular Neurobiology, 2003, 23, 349-364.	3.3	23
276	Tricyclic oxazolo[2,3-f]purinediones: potency as adenosine receptor ligands and anticonvulsants. Bioorganic and Medicinal Chemistry, 2004, 12, 4895-4908.	3.0	23
277	Development and validation of a capillary electrophoresis method for the characterization of herpes simplex virus type 1 (HSV-1) thymidine kinase substrates and inhibitors. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 846, 281-290.	2.3	23
278	Structural analogues of the natural products magnolol and honokiol as potent allosteric potentiators of GABAA receptors. Bioorganic and Medicinal Chemistry, 2014, 22, 6908-6917.	3.0	23
279	8â€Benzyltetrahydropyrazino[2,1â€×i>f]purinediones: Waterâ€Soluble Tricyclic Xanthine Derivatives as Multitarget Drugs for Neurodegenerative Diseases. ChemMedChem, 2014, 9, 1704-1724.	3.2	23
280	8-Substituted 1,3-dimethyltetrahydropyrazino[2,1-f]purinediones: Water-soluble adenosine receptor antagonists and monoamine oxidase B inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 5462-5480.	3.0	23
281	Role of extracellular cysteine residues in the adenosine A2A receptor. Purinergic Signalling, 2016, 12, 313-329.	2.2	23
282	Nucleotide Analog ARL67156 as a Lead Structure for the Development of CD39 and Dual CD39/CD73 Ectonucleotidase Inhibitors. Frontiers in Pharmacology, 2020, 11, 1294.	3.5	23
283	P2Y2 Receptor Promotes High-Fat Diet-Induced Obesity. Frontiers in Endocrinology, 2020, 11, 341.	3.5	23
284	A2A-selective adenosine receptor antagonists: Development of water-soluble prodrugs and a new tritiated radioligand. Drug Development Research, 1998, 45, 190-197.	2.9	22
285	5-Substituted UTP derivatives as P2Y2 receptor agonists. European Journal of Medicinal Chemistry, 1999, 34, 809-824.	5.5	22
286	Adenosine A2A agonist and A2B antagonist mediate an inhibition of inflammation-induced contractile disturbance of a rat gastrointestinal preparation. Purinergic Signalling, 2010, 6, 117-124.	2.2	22
287	Analysis of the Staphylococcus aureus capsule biosynthesis pathway in vitro: Characterization of the UDP-GlcNAc C6 dehydratases CapD and CapE and identification of enzyme inhibitors. International Journal of Medical Microbiology, 2014, 304, 958-969.	3.6	22
288	Structure-activity relationships of imidazothiazinones and analogs as antagonists of the cannabinoid-activated orphan G protein-coupled receptor GPR18. European Journal of Medicinal Chemistry, 2018, 155, 381-397.	5.5	22

#	Article	IF	CITATIONS
289	Thermal proteome profiling identifies the membrane-bound purinergic receptor P2X4 as a target of the autophagy inhibitor indophagolin. Cell Chemical Biology, 2021, 28, 1750-1757.e5.	5.2	22
290	An experimental strategy to probe Gq contribution to signal transduction in living cells. Journal of Biological Chemistry, 2021, 296, 100472.	3.4	22
291	Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription. Journal of Clinical Investigation, 2022, 132, .	8.2	22
292	Synthesis of 8-Substituted Xanthine Derivatives by Suzuki Cross-Coupling Reaction. Heterocycles, 2002, 57, 871.	0.7	21
293	Development of Spin-Labeled Probes for Adenosine Receptorsâ€. Journal of Medicinal Chemistry, 2005, 48, 2108-2114.	6.4	21
294	Synthesis and preliminary evaluation of new 1- and 3-[1-(2-hydroxy-3-phenoxypropyl)]xanthines from 2-amino-2-oxazolines as potential A1 and A2A adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2006, 14, 2697-2719.	3.0	21
295	The vesicular monoamine transporter (VMAT-2) inhibitor tetrabenazine induces tremulous jaw movements in rodents: Implications for pharmacological models of parkinsonian tremor. Neuroscience, 2013, 250, 507-519.	2.3	21
296	Largeâ€volume sample stacking with polarity switching for monitoring of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) reactions by capillary electrophoresis. Electrophoresis, 2014, 35, 855-863.	2.4	21
297	Memory deficits induced by chronic cannabinoid exposure are prevented by adenosine A2AR receptor antagonism. Neuropharmacology, 2019, 155, 10-21.	4.1	21
298	Soluble and membrane-bound adenylate kinase and nucleotidases augment ATP-mediated inflammation in diabetic retinopathy eyes with vitreous hemorrhage. Journal of Molecular Medicine, 2019, 97, 341-354.	3.9	21
299	An Agonist Radioligand for the Proinflammatory Lipid-Activated G Protein-Coupled Receptor GPR84 Providing Structural Insights. Journal of Medicinal Chemistry, 2020, 63, 2391-2410.	6.4	21
300	Cellâ€permeable highâ€affinity tracers for G _q proteins provide structural insights, reveal distinct binding kinetics and identify small molecule inhibitors. British Journal of Pharmacology, 2020, 177, 1898-1916.	5.4	21
301	PSB 603 \hat{a} 6" a known selective adenosine A2B receptor antagonist \hat{a} 6" has anti-inflammatory activity in mice. Biomedicine and Pharmacotherapy, 2021, 135, 111164.	5.6	21
302	Recommended tool compounds and drugs for blocking P2X and P2Y receptors. Purinergic Signalling, 2021, 17, 633-648.	2.2	21
303	Similarities and differences in affinity and binding modes of tricyclic pyrimido- and pyrazinoxanthines at human and rat adenosine receptors. Bioorganic and Medicinal Chemistry, 2016, 24, 4347-4362.	3.0	20
304	Adenosine A _{2A} receptor agonists with potent antiplatelet activity. Platelets, 2018, 29, 292-300.	2.3	20
305	Decarboxylative Coupling Reaction of 2â€(1 <i>H</i> à€Indolâ€3â€yl)acetic Acids with Indole, Azaindole, Benzimidazole and Indazole Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 4286-4293.	4.3	20
306	P2X4 and P2X7 are essential players in basal T cell activity and Ca ²⁺ signaling milliseconds after T cell activation. Science Advances, 2022, 8, eabl9770.	10.3	20

#	Article	IF	CITATIONS
307	A new synthesis of thiophosphoric acid esters with a C-S-P bond. Tetrahedron Letters, 1990, 31, 501-502.	1.4	19
308	Imidazo[2,1-b]thiazepines: synthesis, structure and evaluation of benzodiazepine receptor binding. European Journal of Medicinal Chemistry, 2004, 39, 205-218.	5.5	19
309	Convergent Synthesis of the Potent P2Y Receptor Antagonist MG 50-3-1 Based on a Regioselective Ullmann Coupling Reaction. Molecules, 2012, 17, 2599-2615.	3.8	19
310	The nucleobase adenine as a signalling molecule in the kidney. Acta Physiologica, 2015, 213, 808-818.	3.8	19
311	Thiazolo[3,2-a]benzimidazol-3(2H)-one derivatives: Structure–activity relationships of selective nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3157-3165.	3.0	19
312	3-(2-Carboxyethyl)indole-2-carboxylic Acid Derivatives: Structural Requirements and Properties of Potent Agonists of the Orphan G Protein-Coupled Receptor GPR17. Journal of Medicinal Chemistry, 2018, 61, 8136-8154.	6.4	19
313	Extracellular adenosine reversibly inhibits the activation of human regulatory T cells and negatively influences the achievement of the operational tolerance in liver transplantation. American Journal of Transplantation, 2019, 19, 48-61.	4.7	19
314	Aza-Analogs of 8-Styrylxanthines as A2A-Adenosine Receptor Antagonists. Archiv Der Pharmazie, 1997, 330, 181-189.	4.1	18
315	Emerging structures and ligands for P2X3 and P2X4 receptorsâ€"towards novel treatments of neuropathic pain. Purinergic Signalling, 2010, 6, 145-148.	2.2	18
316	Efficient and mild deamination procedure for 1-aminoanthraquinones yielding a diverse library of novel derivatives with potential biological activity. Tetrahedron Letters, 2012, 53, 6739-6742.	1.4	18
317	A highly sensitive capillary electrophoresis method using p-nitrophenyl 5′-thymidine monophosphate as a substrate for the monitoring of nucleotide pyrophosphatase/phosphodiesterase activities. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 911, 162-169.	2.3	18
318	Deep brain stimulation of the subthalamic nucleus reverses oral tremor in pharmacological models of parkinsonism: interaction with the effects of adenosine A _{2A} antagonism. European Journal of Neuroscience, 2013, 38, 2183-2191.	2.6	18
319	GPR18 Inhibiting Amauromine and the Novel Triterpene Glycoside Auxarthonoside from the Sponge-Derived Fungus Auxarthron reticulatum. Planta Medica, 2015, 81, 1141-1145.	1.3	18
320	Clopidogrel attenuates lithium-induced alterations in renal water and sodium channels/transporters in mice. Purinergic Signalling, 2015, 11, 507-518.	2.2	17
321	Ullmann reactions of 1-amino-4-bromoanthraquinones bearing various 2-substituents furnishing novel dyes. Dyes and Pigments, 2016, 131, 33-40.	3.7	17
322	Expression of Ecto-nucleoside Triphosphate Diphosphohydrolases-2 and -3 in the Enteric Nervous System Affects Inflammation in Experimental Colitis and Crohn's Disease. Journal of Crohn's and Colitis, 2017, 11, 1113-1123.	1.3	17
323	Preysslerâ€Popeâ€leannin Polyanions [NaP ₅ W ₃₀ O ₁₁₀] ^{14–} and [AgP ₅ W ₃₀ O ₁₁₀] ^{14–} : Microwaveâ€Assisted Synthesis, Structure, and Biological Activity. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 752-758.	1.2	17
324	Radiosynthesis and in vivo evaluation of a fluorine-18 labeled pyrazine based radioligand for PET imaging of the adenosine A2B receptor. Bioorganic and Medicinal Chemistry, 2018, 26, 4650-4663.	3.0	17

#	Article	IF	CITATIONS
325	A _{2B} Adenosine Receptor Antagonists with Picomolar Potency. Journal of Medicinal Chemistry, 2019, 62, 4032-4055.	6.4	17
326	Novel multi-target directed ligands based on annelated xanthine scaffold with aromatic substituents acting on adenosine receptor and monoamine oxidase B. Synthesis, in vitro and in silico studies. Bioorganic and Medicinal Chemistry, 2019, 27, 1195-1210.	3.0	17
327	Chromenones as Multineurotargeting Inhibitors of Human Enzymes. ACS Omega, 2019, 4, 22161-22168.	3.5	17
328	Nucleotide P2Y1 receptor agonists are in vitro and in vivo prodrugs of A1/A3 adenosine receptor agonists: implications for roles of P2Y1 and A1/A3 receptors in physiology and pathology. Purinergic Signalling, 2020, 16, 543-559.	2.2	17
329	Macrocyclic Gq Protein Inhibitors FR900359 and/or YM-254890–Fit for Translation?. ACS Pharmacology and Translational Science, 2021, 4, 888-897.	4.9	17
330	Uridine nucleotide receptors and their ligands: structural, physiological, and pathophysiological aspects, with special emphasis on the nervous system. Neurochemical Research, 1997, 22, 1041-1050.	3.3	16
331	Synthesis, biological activity and molecular modelling studies of tricyclic alkylimidazo-, pyrimido- and diazepinopurinediones. Purinergic Signalling, 2013, 9, 395-414.	2.2	16
332	The rat adenine receptor: pharmacological characterization and mutagenesis studies to investigate its putative ligand binding site. Purinergic Signalling, 2013, 9, 367-381.	2.2	16
333	Development of [³ H]2-Carboxy-4,6-dichloro-1 <i>H</i> -indole-3-propionic Acid ([³ H]PSB-12150): A Useful Tool for Studying GPR17. ACS Medicinal Chemistry Letters, 2014, 5, 326-330.	2.8	16
334	Syntheses of 2-substituted 1-amino-4-bromoanthraquinones (bromaminic acid analogues) – precursors for dyes and drugs. Beilstein Journal of Organic Chemistry, 2015, 11, 2326-2333.	2.2	16
335	Fluorescence polarization immunoassays for monitoring nucleoside triphosphate diphosphohydrolase (NTPDase) activity. Analyst, The, 2015, 140, 140-148.	3.5	16
336	Nanodiscs for INPHARMA NMR Characterization of GPCRs: Ligand Binding to the Human A2A Adenosine Receptor. Angewandte Chemie - International Edition, 2017, 56, 5750-5754.	13.8	16
337	Tritium-labeled agonists as tools for studying adenosine A2B receptors. Purinergic Signalling, 2018, 14, 223-233.	2.2	16
338	Discovery of Tricyclic Xanthines as Agonists of the Cannabinoid-Activated Orphan G-Protein-Coupled Receptor GPR18. ACS Medicinal Chemistry Letters, 2020, 11, 2024-2031.	2.8	16
339	1-Substituted 4-[Chloropyrazolyl][1,2,4]triazolo[4,3-a]quinoxalines: Synthesis and Structure-Activity Relationships of a New Class of Benzodiazepine and Adenosine Receptor Ligands. Archiv Der Pharmazie, 1998, 331, 163-169.	4.1	15
340	Rapid microwave-assisted fluorination yielding novel 5′-deoxy-5′-fluorouridine derivatives. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6139-6142.	2.2	15
341	2-Phenyl-1-[4-(2-piperidine-1-yl-ethoxy)benzyl]-1H-benzimidazoles as ligands for the estrogen receptor: Synthesis and pharmacological evaluation. Bioorganic and Medicinal Chemistry, 2010, 18, 4905-4916.	3.0	15
342	Dissection of P2X4 and P2X7 Receptor Current Components in BV-2 Microglia. International Journal of Molecular Sciences, 2020, 21, 8489.	4.1	15

#	Article	IF	Citations
343	Evaluation of anticonvulsant and analgesic effects of benzyl- and benzhydryl ureides. European Journal of Pharmacology, 2007, 559, 138-149.	3.5	14
344	Antiparkinsonian Effects of Novel Adenosine A _{2A} Receptor Antagonists. Archiv Der Pharmazie, 2011, 344, 20-27.	4.1	14
345	Fast, Efficient, and Versatile Synthesis of 6-amino-5-carboxamidouracils as Precursors for 8-Substituted Xanthines. Frontiers in Chemistry, 2019, 7, 56.	3.6	14
346	Synthesis of Novel Potent Archazolids: Pharmacology of an Emerging Class of Anticancer Drugs. Journal of Medicinal Chemistry, 2020, 63, 1684-1698.	6.4	14
347	Recombinant expression of ecto-nucleotide pyrophosphatase/phosphodiesterase 4 (NPP4) and development of a luminescence-based assay to identify inhibitors. Analytical Biochemistry, 2020, 603, 113774.	2.4	14
348	Single Stabilizing Point Mutation Enables Highâ€Resolution Coâ€Crystal Structures of the Adenosine A _{2A} Receptor with Preladenant Conjugates. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
349	Lack of adenosine A1 and dopamine D2 receptor-mediated modulation of the cardiovascular effects of the adenosine A2A receptor agonist CGS 21680. European Journal of Pharmacology, 2004, 484, 269-275.	3.5	13
350	Microwave-assisted ring closure reactions: Synthesis of 8-substituted xanthine derivatives and related pyrimido- and diazepinopurinediones. Beilstein Journal of Organic Chemistry, 2006, 2, 20.	2.2	13
351	Ammonium-induced calcium mobilization in 1321N1 astrocytoma cells. Toxicology and Applied Pharmacology, 2008, 227, 36-47.	2.8	13
352	Regioselective synthesis of 7,8-dihydroimidazo[5,1- $\langle i \rangle$ c $ i\rangle$][1,2,4]triazine-3,6(2 $\langle i \rangle$ H $\langle i \rangle$,4 $\langle i \rangle$ H $\langle i \rangle$)-dione derivatives: A new drug-like heterocyclic scaffold. Beilstein Journal of Organic Chemistry, 2012, 8, 1584-1593.	2.2	13
353	Inhibitors for the bacterial ectonucleotidase Lp1NTPDase from Legionella pneumophila. Bioorganic and Medicinal Chemistry, 2016, 24, 4363-4371.	3.0	13
354	Computational Investigations on the Binding Mode of Ligands for the Cannabinoid-Activated G Protein-Coupled Receptor GPR18. Biomolecules, 2020, 10, 686.	4.0	13
355	Sphingosine-1-phosphate induces migration of microglial cells via activation of volume-sensitive anion channels, ATP secretion and activation of purinergic receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118915.	4.1	13
356	Development of a microbioreactor with ecto-nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) immobilized on a polyacrylamide-coated capillary at the outlet. Journal of Chromatography A, 2010, 1217, 600-604.	3.7	12
357	Cellular localization of adenine receptors in the rat kidney and their functional significance in the inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 2013, 305, F1298-F1305.	2.7	12
358	Focused screening to identify new adenosine kinase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 5127-5133.	3.0	12
359	Mechanism underlying the contractile activity of UTP in the mammalian heart. European Journal of Pharmacology, 2018, 830, 47-58.	3.5	12
360	Development of a selective and highly sensitive fluorescence assay for nucleoside triphosphate diphosphohydrolase1 (NTPDase1, CD39). Analyst, The, 2018, 143, 5417-5430.	3.5	12

#	Article	IF	CITATIONS
361	Medicinal Chemistry of A2B Adenosine Receptors. , 2018, , 137-168.		12
362	Development of Anthraquinone Derivatives as Ectonucleoside Triphosphate Diphosphohydrolase (NTPDase) Inhibitors With Selectivity for NTPDase2 and NTPDase3. Frontiers in Pharmacology, 2020, 11, 1282.	3.5	12
363	P2Y ₁ â€like nucleotide receptors—Structures, molecular modeling, mutagenesis, and oligomerization. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1464.	14.6	12
364	A Novel Ring Closure Reaction for the Preparation of 6-Aminouracils with an a-Branched 1-Substituent. Heterocycles, 2000, 53, 347.	0.7	11
365	The map kinase ERK regulates renal activity of cyclin-dependent kinase 2 in experimental glomerulonephritis. Nephrology Dialysis Transplantation, 2007, 22, 3431-3441.	0.7	11
366	Improved synthesis of 4-/6-substituted 2-carboxy-1H-indole-3-propionic acid derivatives and structure–activity relationships as GPR17 agonists. MedChemComm, 2014, 5, 86-92.	3.4	11
367	Angiotensin II type 1/adenosine A 2A receptor oligomers: a novel target for tardive dyskinesia. Scientific Reports, 2017, 7, 1857.	3.3	11
368	Chemistry and Analysis of Organic Compounds in Dinosaurs. Biology, 2022, 11, 670.	2.8	11
369	Synthesis of Paraxanthine and Isoparaxanthine Analogs (1,7- and 1,9-Substituted Xanthine Derivatives). Synthesis, 1998, 1998, 1428-1436.	2.3	10
370	Farnesyl pyrophosphate is an endogenous antagonist to ADP-stimulated P2Y12 receptor-mediated platelet aggregation. Thrombosis and Haemostasis, 2012, 108, 119-132.	3.4	10
371	Adenosine A2A receptor contributes to the anti-inflammatory effect of the fixed herbal combination STW 5 (lberogast \hat{A}^{\oplus}) in rat small intestinal preparations. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 411-421.	3.0	10
372	Synthesis of Novel Pyrido[3,2â€ <i>e</i>][1,2,4]triazolo[1,5â€ <i>c</i>]pyrimidine Derivatives: Potent and Selective Adenosine A ₃ Receptor Antagonists. Archiv Der Pharmazie, 2013, 346, 699-707.	4.1	10
373	Prasugrel suppresses development of lithium-induced nephrogenic diabetes insipidus in mice. Purinergic Signalling, 2017, 13, 239-248.	2.2	10
374	Design, synthesis and biological evaluation of suramin-derived dual antagonists of the proinflammatory G protein-coupled receptors P2Y2 and GPR17. European Journal of Medicinal Chemistry, 2020, 186, 111789.	5.5	10
375	Fluorescent Probes for Ecto-5′-nucleotidase (CD73). ACS Medicinal Chemistry Letters, 2020, 11, 2253-2260.	2.8	10
376	Discovery and Structure Relationships of Salicylanilide Derivatives as Potent, Non-acidic P2X1 Receptor Antagonists. Journal of Medicinal Chemistry, 2020, 63, 6164-6178.	6.4	10
377	Unraveling binding mechanism and kinetics of macrocyclic $\hat{Gl}\pm q$ protein inhibitors. Pharmacological Research, 2021, 173, 105880.	7.1	10
378	Quantification of Degradation Products Formed during Heat Sterilization of Glucose Solutions by LC-MS/MS: Impact of Autoclaving Temperature and Duration on Degradation. Pharmaceuticals, 2021, 14, 1121.	3.8	10

#	Article	IF	CITATIONS
379	Amphiphile unsymmetrische Disulfide als Liposomenbausteine. Archiv Der Pharmazie, 1989, 322, 343-350.	4.1	9
380	Arylidene imidazothiazoles. Synthesis, structure and benzodiazepine receptor binding. Journal of Heterocyclic Chemistry, 1999, 36, 257-263.	2.6	9
381	Domains for activation and inactivation in G protein-coupled receptors – A mutational analysis of constitutive activity of the adenosine A2B receptor. Biochemical Pharmacology, 2014, 92, 348-357.	4.4	9
382	Interaction of Approved Drugs with Synaptic Vesicle Protein 2A. Archiv Der Pharmazie, 2017, 350, 1700003.	4.1	9
383	Tricyclic xanthine derivatives containing a basic substituent: adenosine receptor affinity and drug-related properties. MedChemComm, 2018, 9, 951-962.	3.4	9
384	Development of Chromen-4-one Derivatives as (Ant)agonists for the Lipid-Activated G Protein-Coupled Receptor GPR55 with Tunable Efficacy. ACS Omega, 2019, 4, 4276-4295.	3. 5	9
385	Substituted 4-phenylthiazoles: Development of potent and selective A1, A3 and dual A1/A3 adenosine receptor antagonists. European Journal of Medicinal Chemistry, 2020, 186, 111879.	5 . 5	9
386	Novel, Dual Targetâ€Directed Annelated Xanthine Derivatives Acting on Adenosine Receptors and Monoamine Oxidase B. ChemMedChem, 2020, 15, 772-786.	3.2	9
387	Structure-activity relationships of agonists for the orphan G protein-coupled receptor GPR27. European Journal of Medicinal Chemistry, 2021, 225, 113777.	5.5	9
388	Development Assay for of a 5-Hydroxytryptamine2A Receptor Binding High Throughput Screening Using 96-Well Microfilter Plates. Journal of Biomolecular Screening, 2000, 5, 269-277.	2.6	8
389	Genome Editing in Neuroepithelial Stem Cells to Generate Human Neurons with High Adenosine-Releasing Capacity. Stem Cells Translational Medicine, 2018, 7, 477-486.	3.3	8
390	Probing Substituents in the 1- and 3-Position: Tetrahydropyrazino-Annelated Water-Soluble Xanthine Derivatives as Multi-Target Drugs With Potent Adenosine Receptor Antagonistic Activity. Frontiers in Chemistry, 2018, 6, 206.	3.6	8
391	Investigation on 2′,3′- <i>O</i> Substituted ATP Derivatives and Analogs as Novel P2X3 Receptor Antagonists. ACS Medicinal Chemistry Letters, 2019, 10, 493-498.	2.8	8
392	Sulfated Polysaccharides from Macroalgae Are Potent Dual Inhibitors of Human ATP-Hydrolyzing Ectonucleotidases NPP1 and CD39. Marine Drugs, 2021, 19, 51.	4.6	8
393	Agonist-Dependent Coupling of the Promiscuous Adenosine A _{2B} Receptor to Gα Protein Subunits. ACS Pharmacology and Translational Science, 2022, 5, 373-386.	4.9	8
394	Agonists, Antagonists, and Modulators of P2X7 Receptors. Methods in Molecular Biology, 2022, , 31-52.	0.9	8
395	[3H]Adenine is a suitable radioligand for the labeling of G protein-coupled adenine receptors but shows high affinity to bacterial contaminations in buffer solutions. Purinergic Signalling, 2007, 3, 347-358.	2.2	7
396	Tritium‣abeled Brivaracetam with High Specific Activity: Preparation, Characterization and Application in Human Brain Samples. ChemMedChem, 2012, 7, 1369-1374.	3.2	7

#	Article	IF	CITATIONS
397	A capillary electrophoresis method with dynamic pH junction stacking for the monitoring of cerebroside sulfotransferase. Journal of Chromatography A, 2015, 1407, 222-227.	3.7	7
398	Gâ€Proteinâ€Coupled Receptors: Sustained Signaling via Intracellular Megaplexes and Pathwayâ€Specific Drugs. Angewandte Chemie - International Edition, 2016, 55, 15962-15964.	13.8	7
399	Induction of oral tremor in mice by the acetylcholinesterase inhibitor galantamine: Reversal with adenosine A2A antagonism. Pharmacology Biochemistry and Behavior, 2016, 140, 62-67.	2.9	7
400	Modulating P1 Adenosine Receptors in Disease Progression of SOD1G93A Mutant Mice. Neurochemical Research, 2019, 44, 1037-1042.	3.3	7
401	A Cellular Assay for the Identification and Characterization of Connexin Gap Junction Modulators. International Journal of Molecular Sciences, 2021, 22, 1417.	4.1	7
402	Effects of GPR18 Ligands on Body Weight and Metabolic Parameters in a Female Rat Model of Excessive Eating. Pharmaceuticals, 2021, 14, 270.	3.8	7
403	Feature-Based Molecular Networking for the Targeted Identification of G _q -Inhibiting FR900359 Derivatives. Journal of Natural Products, 2021, 84, 1941-1953.	3.0	7
404	The GPR18 Agonist PSB-KD-107 Exerts Endothelium-Dependent Vasorelaxant Effects. Pharmaceuticals, 2021, 14, 799.	3.8	7
405	GPR18-Mediated Relaxation of Human Isolated Pulmonary Arteries. International Journal of Molecular Sciences, 2022, 23, 1427.	4.1	7
406	Heterotrimeric G Protein \hat{l} ±-Subunits - Structures, Peptide-Derived Inhibitors, and Mechanisms. Current Medicinal Chemistry, 2022, 29, 6359-6378.	2.4	7
407	Quantification of green fluorescent protein-(GFP-) tagged membrane proteins by capillary gel electrophoresis. Analyst, The, 2017, 142, 3648-3655.	3. 5	6
408	Mechanisms of the action of adenine on antiâ€allergic effects in mast cells. Immunity, Inflammation and Disease, 2018, 6, 97-105.	2.7	6
409	Identification of adenine-N9-(methoxy)ethyl- \hat{l}^2 -bisphosphonate as NPP1 inhibitor attenuates NPPase activity in human osteoarthritic chondrocytes. Purinergic Signalling, 2019, 15, 247-263.	2.2	6
410	Ligand binding and activation of UTP-activated G protein-coupled P2Y2 and P2Y4 receptors elucidated by mutagenesis, pharmacological and computational studies. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129501.	2.4	6
411	Adenosine A _{2A} R/A ₁ R Antagonists Enabling Additional H ₃ R Antagonism for the Treatment of Parkinson's Disease. Journal of Medicinal Chemistry, 2021, 64, 8246-8262.	6.4	6
412	Fintiamin: A diketopiperazine from the marine spongeâ€derived fungus Eurotium sp Archiv Der Pharmazie, 2021, 354, e2100206.	4.1	6
413	P2Y receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	6
414	Improved, Efficient Synthesis for Multigram-Scale Production of PSB-10, a Potent Antagonist at Human A3 Adenosine Receptors. Heterocycles, 2003, 60, 1425.	0.7	6

#	Article	IF	CITATIONS
415	Andrographolide Derivatives Target the KEAP1/NRF2 Axis and Possess Potent Antiâ€SARS oVâ€2 Activity. ChemMedChem, 2022, 17, e202100732.	3.2	6
416	Discovery of P2Y ₂ Receptor Antagonist Scaffolds through Virtual High-Throughput Screening. Journal of Chemical Information and Modeling, 2022, 62, 1538-1549.	5.4	6
417	Irreversible Antagonists for the Adenosine A2B Receptor. Molecules, 2022, 27, 3792.	3.8	6
418	Lipophilic disulfide prodrugs â€" syntheses and disulfide bond cleavage. International Journal of Pharmaceutics, 1989, 57, 41-47.	5.2	5
419	Facile synthesis of 5-amino- and 7-amino-6-azaoxindole derivatives. Tetrahedron Letters, 2012, 53, 5597-5601.	1.4	5
420	Heterologe Expression, Biosynthese und ökologische Funktion des selektiven Gq‧ignaltransduktionsinhibitors FR900359. Angewandte Chemie, 2018, 130, 844-849.	2.0	5
421	Design, Synthesis and Biological Evaluation of Highly Potent Simplified Archazolids. ChemMedChem, 2020, 15, 1348-1363.	3.2	5
422	8-Benzylaminoxanthine scaffold variations for selective ligands acting on adenosine A2A receptors. Design, synthesis and biological evaluation. Bioorganic Chemistry, 2020, 101, 104033.	4.1	5
423	lodine-catalyzed electrophilic substitution of indoles: Synthesis of (un)symmetrical diindolylmethanes with a quaternary carbon center. Beilstein Journal of Organic Chemistry, 2021, 17, 1464-1475.	2.2	5
424	Discovery of potent nucleotide pyrophosphatase/phosphodiesterase3 (NPP3) inhibitors with ancillary carbonic anhydrase inhibition for cancer (immuno)therapy. RSC Medicinal Chemistry, 2021, 12, 1187-1206.	3.9	5
425	Development of high-affinity fluorinated ligands for cannabinoid subtype 2 receptor, and inÂvitro evaluation of a radioactive tracer for imaging. European Journal of Medicinal Chemistry, 2022, 232, 114138.	5.5	5
426	Structure–Activity Relationship of 3-Methylcytidine-5′-α,β-methylenediphosphates as CD73 Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 2409-2433.	6.4	5
427	CD73 controls ocular adenosine levels and protects retina from light-induced phototoxicity. Cellular and Molecular Life Sciences, 2022, 79, 152.	5.4	5
428	[³ H]BQ-123 Binding to Native Endothelin ET _A Receptors in Human Astrocytoma 1321N1 Cells and Screening of Potential Ligands. Pharmacology, 2005, 74, 51-56.	2.2	4
429	Synthesis of tritiumâ€labeled levetiracetam ((2 <i>S</i>)â€2â€(2â€oxopyrrolidinâ€1â€yl)butanamide) with high specific activity. Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55, 48-51.	1.0	4
430	Sensitive LC-MS/MS Method for the Quantification of Macrocyclic $\widehat{Gl}\pm q$ Protein Inhibitors in Biological Samples. Frontiers in Chemistry, 2020, 8, 833.	3.6	4
431	Synthesis and structure-activity relationships of cerebroside analogues as substrates of cerebroside sulphotransferase and discovery of a competitive inhibitor. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1503-1512.	5.2	4
432	Blocking Striatal Adenosine A2A Receptors: A New Strategy for Basal Ganglia Disorders. , 2010, , 304-341.		4

#	Article	IF	CITATIONS
433	2â€Substituted thienotetrahydropyridine derivatives: Allosteric ectonucleotidase inhibitors. Archiv Der Pharmazie, 2021, 354, e2100300.	4.1	4
434	Pyrimidin-8-on[2,1-f]theophylline-9-alkylcarboxylic acids amides as A1 and A2A adenosine receptor ligands. Il Farmaco, 2003, 58, 439-444.	0.9	3
435	Preparation of enantiopure (<i>R</i>)â€hydroxy metabolite of denbufylline using immobilized <i>Lactobacillus kefiri</i> DSM 20587 as a catalyst. Chirality, 2009, 21, 713-718.	2.6	3
436	Synthesis of a hydrolytically stable, fluorescent-labeled ATP analog as a tool for probing adenylyl cyclases. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 232-235.	2.2	3
437	Nanodiscs for INPHARMA NMR Characterization of GPCRs: Ligand Binding to the Human A2A Adenosine Receptor. Angewandte Chemie, 2017, 129, 5844-5848.	2.0	3
438	Adenine-(methoxy)-ethoxy- $P\hat{l}_{\pm}$, \hat{l}_{\pm} -dithio-triphosphate inhibits pathologic calcium pyrophosphate deposition in osteoarthritic human chondrocytes. Organic and Biomolecular Chemistry, 2019, 17, 9913-9923.	2.8	3
439	Development of a Radiofluorinated Adenosine A2B Receptor Antagonist as Potential Ligand for PET Imaging. International Journal of Molecular Sciences, 2020, 21, 3197.	4.1	3
440	Die Hauptprotease von SARSâ€CoVâ€2 als Zielstruktur: Von der Etablierung eines Hochdurchsatzâ€Screenings zum Design maÄŸgeschneiderter Inhibitoren. Angewandte Chemie, 2021, 133, 10515-10521.	2.0	3
441	New Drug Modalities in Medicinal Chemistry, Pharmacology, and Translational Science: Joint Virtual Special Issue by <i>Journal of Medicinal Chemistry (i), <i>ACS Medicinal Chemistry Letters (i), and <i>ACS Pharmacology & Dranslational Science (i). Journal of Medicinal Chemistry, 2021, 64, 13935-13936.</i></i></i>	6.4	3
442	Cellular Localization of PO (Adenine) Receptor in Rat Kidney. FASEB Journal, 2012, 26, 688.3.	0.5	3
443	Involvement of GPR17 in Neuronal Fibre Outgrowth. International Journal of Molecular Sciences, 2021, 22, 11683.	4.1	3
444	5,5'-Bipyridyl-2,4,6,2',4',6'-hexaone Derivatives (Hydurilic Acids): Syntheses, Mechanism of C-C-Bo Formation and Properties of the Dimeric Barbituric Acid Derivatives. Heterocycles, 2009, 79, 703.	nd 0.7	2
445	International Conference on Purinergic Drugs and Targets—4th Joint German–Italian Purine Club Meeting, Bonn, Germany, July 22–25, 2011. Purinergic Signalling, 2012, 8, 105-106.	2.2	2
446	Structural and Conformational Studies on Carboxamides of 5,6-Diaminouracilsâ€"Precursors of Biologically Active Xanthine Derivatives. Molecules, 2019, 24, 2168.	3.8	2
447	Koala and Wombat Gammaherpesviruses Encode the First Known Viral NTPDase Homologs and Are Phylogenetically Divergent from All Known Gammaherpesviruses. Journal of Virology, 2019, 93, .	3.4	2
448	Accelerating Translation of Innovative Drugs from Bench to Patients: ACS Pharmacology & Translational Science to Evolve, Grow, and Bridge the Gap between Chemistry and Biology in Drug Research and Development. ACS Pharmacology and Translational Science, 2021, 4, 1026-1027.	4.9	2
449	New Drug Modalities in Medicinal Chemistry, Pharmacology, and Translational Science: Joint Virtual Special Issue by Journal of Medicinal Chemistry, ACS Medicinal Chemistry Letters, and ACS Pharmacology & Translational Science. ACS Medicinal Chemistry Letters, 2021, 12, 1508-1509.	2.8	2
450	Formation of 7,9-Disubstituted Xanthinium Compounds Under Mild Conditions by Alkylation of Silylated Xanthines. Synthetic Communications, 1994, 24, 1311-1315.	2.1	1

#	Article	IF	CITATIONS
451	Crystal structure of 3-benzyl-5,5-dimethylimidazolidine-2,4-dione, C12H14N2O2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2009, 224, 601-602.	0.3	1
452	Crystal structure of 1-((2R,3R,4S,5R)-3,4-dihydroxy-5-hydroxymethyltetrahydrofuran-) Tj ETQq0 0 0 rgBT /Overlock Structures, 2009, 224, 107-108.	2 10 Tf 50 7 0.3	707 Td (2-yl) 1
453	Adenosine A2A Receptor Antagonists in Drug Development. Current Topics in Neurotoxicity, 2015, , 39-56.	0.4	1
454	Synthesis of Novel Fluorinated Xanthine Derivatives with High Adenosine A2B Receptor Binding Affinity. Pharmaceuticals, 2021, 14, 485.	3.8	1
455	The Reactivity of Related 6-Amino- and 5,6-Diaminouracils Derived from 2-Amino-5-(phenoxymethyl)-2-oxazoline: Efficient Access to Bicyclic Pyrimidine Derivatives. Synthesis, 2007, 2007, 2193-2197.	2.3	O
456	Crystal structure of 6-amino-3-cyclopropyl-1-ethyl-1Hpyrimidine- 2,4-dione hydrate, C9H13N3O2 \hat{A} · H2O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2010, 225, 595-596.	0.3	0
457	A Combined Experimental and Simulation Approach to Develop Selective High-Affinity Small-Molecule Inhibitors of Cannabinoid Receptors CB1/CB2. Biophysical Journal, 2011, 100, 548a-549a.	0.5	O
458	Tools and Drugs for Purine-Binding Targetsâ€"Important Players in Inflammation and Cancer. Proceedings (mdpi), 2019, 22, .	0.2	0
459	Europe Virtual Issue: Pharmacology and Translational Science in Europe. ACS Pharmacology and Translational Science, 2021, 4, 1264-1264.	4.9	0
460	Virtual Issue: Oncology, Immunology, and Immuno-oncology. ACS Pharmacology and Translational Science, 2021, 4, 1475.	4.9	0
461	New Drug Modalities in Medicinal Chemistry, Pharmacology, and Translational Science: Joint Virtual Special Issue by Journal of Medicinal Chemistry, ACS Medicinal Chemistry Letters, and ACS Pharmacology & Translational Science. ACS Pharmacology and Translational Science, 2021, 4, 1712-1713.	4.9	O
462	Synthesis of xanthine derivatives by microwave-assisted ring closure reaction. Arkivoc, 2006, 2006, 77-82.	0.5	0
463	Eine einzige stabilisierende Punktmutation ermöglicht hochaufgelöste Coâ€Kristallstrukturen des Adenosinâ€A _{2A} â€Rezeptors mit Preladenantâ€Konjugaten. Angewandte Chemie, 0, , .	2.0	0
464	<i>ACS Pharmacology & Damp; Translational Science (i) in 2022. ACS Pharmacology and Translational Science, 2022, 5, 1-2.</i>	4.9	0
465	Innentitelbild: Eine einzige stabilisierende Punktmutation ermöglicht hochaufgelöste Coâ€Kristallstrukturen des Adenosinâ€A _{2A} â€Rezeptors mit Preladenantâ€Konjugaten (Angew.) Tj ET	¯@αρ1 1 0.7	′ & 4314 rgBT