Kai Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2400814/publications.pdf

Version: 2024-02-01

214527 126708 4,911 271 33 47 citations h-index g-index papers 282 282 282 4114 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Library Design, Synthesis, and Screening:Â Pyridine Dicarbonitriles as Potential Prion Disease Therapeutics. Journal of Medicinal Chemistry, 2006, 49, 607-615.	2.9	123
2	Controllable morphology CoFe2O4/g-C3N4 p-n heterojunction photocatalysts with built-in electric field enhance photocatalytic performance. Applied Catalysis B: Environmental, 2022, 306, 121107.	10.8	112
3	Electrochemical oxidative cyclization of activated alkynes with diselenides or disulfides: access to functionalized coumarins or quinolinones. Green Chemistry, 2019, 21, 4706-4711.	4.6	92
4	Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidised soybean oil with methanol, phenol, and cyclohexanol. Industrial Crops and Products, 2015, 74, 76-82.	2.5	77
5	Synthesis and evaluation of a focused library of pyridine dicarbonitriles against prion disease. European Journal of Medicinal Chemistry, 2008, 43, 93-106.	2.6	75
6	Exploring Catalyst and Solvent Effects in the Multicomponent Synthesis of Pyridine-3,5-dicarbonitriles. Journal of Organic Chemistry, 2009, 74, 6999-7006.	1.7	70
7	Electrochemical Synthesis of Spiro[4.5]trienones through Radicalâ€Initiated Dearomative Spirocyclization. ChemSusChem, 2020, 13, 2053-2059.	3.6	69
8	Production of liquid hydrocarbon fuels with acetoin and platform molecules derived from lignocellulose. Green Chemistry, 2016, 18, 2165-2174.	4.6	67
9	Electrochemical Sulfonylation/Heteroarylation of Alkenes via Distal Heteroaryl <i>ipso</i> -Migration. Organic Letters, 2018, 20, 7784-7789.	2.4	61
10	Enzymeâ€Mediated In Situ Selfâ€Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angewandte Chemie - International Edition, 2021, 60, 18082-18093.	7.2	58
11	Sustainable bio-based furan epoxy resin with flame retardancy. Polymer Chemistry, 2019, 10, 2370-2375.	1.9	54
12	Organocatalyzed Anionic Ring-Opening Polymerizations of <i>N</i> Sulfonyl Aziridines with Organic Superbases. ACS Macro Letters, 2017, 6, 1331-1336.	2.3	53
13	Epoxidation of Soybean Oil by Continuous Micro-Flow System with Continuous Separation. Organic Process Research and Development, 2013, 17, 1137-1141.	1.3	51
14	Imidodiphosphoric acid as a bifunctional catalyst for the controlled ring-opening polymerization of \hat{l} -valerolactone and $\hat{l}\mu$ -caprolactone. Polymer Chemistry, 2013, 4, 5432.	1.9	51
15	A base–conjugate-acid pair for living/controlled ring-opening polymerization of trimethylene carbonate through hydrogen-bonding bifunctional synergistic catalysis. Polymer Chemistry, 2014, 5, 6051-6059.	1.9	49
16	Benzene containing polyhydroxyalkanoates homo- and copolymers synthesized by genome edited Pseudomonas entomophila. Science China Life Sciences, 2014, 57, 4-10.	2.3	48
17	Green plasticizers derived from epoxidized soybean oil for poly (vinyl chloride): Continuous synthesis and evaluation in PVC films. Chemical Engineering Journal, 2020, 380, 122532.	6.6	47
18	Mechanistic studies leading to a new procedure for rapid, microwave assisted generation of pyridine-3,5-dicarbonitrile libraries. Tetrahedron, 2007, 63, 5300-5311.	1.0	46

#	Article	IF	CITATIONS
19	Electrochemical C–N bond activation for deaminative reductive coupling of Katritzky salts. Nature Communications, 2021, 12, 6745.	5.8	45
20	Organocatalytic Three-Component 1,2-Cyanoalkylacylation of Alkenes via Radical Relay. Organic Letters, 2021, 23, 183-189.	2.4	44
21	Dichloroimidazolidinedione-Activated Beckmann Rearrangement of Ketoximes for Accessing Amides and Lactams. Journal of Organic Chemistry, 2018, 83, 2040-2049.	1.7	43
22	Thermal stable honokiol-derived epoxy resin with reinforced thermal conductivity, dielectric properties and flame resistance. Chemical Engineering Journal, 2021, 412, 128647.	6.6	43
23	A squaramide and tertiary amine: an excellent hydrogen-bonding pair organocatalyst for living polymerization. Polymer Chemistry, 2015, 6, 3754-3757.	1.9	42
24	Advances, Challenges, and Opportunities of Poly(\hat{l}^3 -butyrolactone)-Based Recyclable Polymers. ACS Macro Letters, 2021, 10, 284-296.	2.3	40
25	Phytic acid: a biogenic organocatalyst for one-pot Biginelli reactions to 3,4-dihydropyrimidin-2(1H)-ones/thiones. RSC Advances, 2014, 4, 19710-19715.	1.7	39
26	Synthesis of Soy-Polyols Using a Continuous Microflow System and Preparation of Soy-based Polyurethane Rigid Foams. ACS Sustainable Chemistry and Engineering, 2015, 3, 1197-1204.	3.2	39
27	Traceless switch organocatalysis enables multiblock ring-opening copolymerizations of lactones, carbonates, and lactides: by a one plus one approach in one pot. Polymer Chemistry, 2016, 7, 6297-6308.	1.9	39
28	A novel micro-flow system under microwave irradiation for continuous synthesis of 1,4-dihydropyridines in the absence of solvents via Hantzsch reaction. Chemical Engineering Journal, 2018, 331, 161-168.	6.6	39
29	Nonenzymatic and Metal-Free Organocatalysis for in Situ Regeneration of Oxidized Cofactors by Activation and Reduction of Molecular Oxygen. ACS Catalysis, 2016, 6, 4989-4994.	5.5	36
30	Tritylium Cation as Low Loading Lewis Acidic Organocatalyst in Povarov Reactions. ACS Sustainable Chemistry and Engineering, 2016, 4, 47-52.	3.2	35
31	Continuous flow ring-opening polymerizations. Reaction Chemistry and Engineering, 2017, 2, 20-26.	1.9	35
32	Photoredoxâ€Catalzyed Haloâ€trifluoromethylation of 1,7â€Enynes for Synthesis of 3,4â€Dihydroquinolinâ€2(1 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2019, 361, 1835-1845.	2.1	35
33	Fixation of CO ₂ into Cyclic Carbonates by Halogenâ€Bonding Catalysis. ChemSusChem, 2021, 14, 738-744.	3.6	35
34	Visible-Light Photocatalytic Tri- and Difluoroalkylation Cyclizations: Access to a Series of Indole [2,1- <i>a</i>]isoquinoline Derivatives in Continuous Flow. Organic Letters, 2021, 23, 1950-1954.	2.4	35
35	Continuous flow SET-LRP in the presence of P(VDF-co-CTFE) as macroinitiator in a copper tubular reactor. Polymer Chemistry, 2016, 7, 474-480.	1.9	33
36	NH ₄ 1-Triggered [4 + 2] Annulation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketoxime Acetates with <i>N</i> -Acetyl Enamides for the Synthesis of Pyridines. Journal of Organic Chemistry, 2020, 85, 8157-8165.	1.7	33

#	Article	IF	Citations
37	Ionic hydrogen bond donor organocatalyst for fast living ring-opening polymerization. Polymer Chemistry, 2016, 7, 339-349.	1.9	32
38	Metalâ€Free Radicalâ€Triggered Selenosulfonation of 1,7â€Enynes for the Rapid Synthesis of 3,4â€Dihydroquinolinâ€2(1 <i>H</i>)â€ones in Batch and Flow. Advanced Synthesis and Catalysis, 2017, 359, 4332-4339.	2.1	32
39	Nickelâ€Catalyzed Regioselective C–H Bond Mono―and Bisâ€Nitration of Aryloxazolines with <i>tertâ€</i> Butyl Nitrite as Nitro Source. Advanced Synthesis and Catalysis, 2017, 359, 2596-2604.	2.1	31
40	Iron(<scp>ii</scp>)-catalyzed C-2 cyanomethylation of indoles and pyrroles <i>via</i> direct oxidative cross-dehydrogenative coupling with acetonitrile derivatives. Organic Chemistry Frontiers, 2018, 5, 1129-1134.	2.3	31
41	Oxidant- and Catalyst-Free Synthesis of Sulfonated Benzothiophenes via Electrooxidative Tandem Cyclization. Journal of Organic Chemistry, 2021, 86, 2593-2601.	1.7	31
42	Discovery and SAR studies of methionine–proline anilides as dengue virus NS2B-NS3 protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6549-6554.	1.0	30
43	o-Benzenedisulfonimide as a recyclable cationic organocatalyst for the controlled/living ring-opening polymerization of \hat{l} -valerolactone and $\hat{l}\mu$ -caprolactone. Polymer Chemistry, 2014, 5, 3098-3106.	1.9	30
44	Regioselective Chlorination of Quinoline <i>N</i> â€Oxides and Isoquinoline <i>N</i> â€Oxides Using PPh ₃ /Cl ₃ CCN. European Journal of Organic Chemistry, 2016, 2016, 1606-1611.	1.2	30
45	Continuous flow copper-mediated reversible deactivation radical polymerizations. European Polymer Journal, 2016, 80, 177-185.	2.6	30
46	Development of High-Performance Biodegradable Rigid Polyurethane Foams Using Full Modified Soy-Based Polyols. Journal of Agricultural and Food Chemistry, 2019, 67, 2220-2226.	2.4	30
47	Copper-Catalyzed N–O Cleavage of α,β-Unsaturated Ketoxime Acetates toward Structurally Diverse Pyridines. Journal of Organic Chemistry, 2020, 85, 2532-2542.	1.7	30
48	C- to N-Center Remote Heteroaryl Migration via Electrochemical Initiation of N Radical by Organic Catalyst. Organic Letters, 2020, 22, 795-799.	2.4	30
49	Squaramide and amine binary H-bond organocatalysis in polymerizations of cyclic carbonates, lactones, and lactides. Polymer Chemistry, 2017, 8, 7054-7068.	1.9	29
50	Phosphoramidic acid catalyzed controlled/living ring-opening polymerization ofÂtrimethylene carbonate. Polymer, 2013, 54, 4177-4182.	1.8	28
51	Bifunctional imidodiphosphoric acid-catalyzed controlled/living ring-opening polymerization of trimethylene carbonate resulting block, $\hat{l}\pm,\hat{l}\%$ -dihydroxy telechelic, and star-shaped polycarbonates. Journal of Polymer Science Part A, 2014, 52, 1009-1019.	2.5	28
52	A novel microfluidic enzyme-organocatalysis combination strategy for ring-opening copolymerizations of lactone, lactide and cyclic carbonate. Chemical Engineering Journal, 2019, 356, 592-597.	6.6	28
53	Iron-catalyzed [4 + 2] annulation of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketoxime acetates with enaminones toward functionalized pyridines. Green Synthesis and Catalysis, 2021, 2, 237-240.	3.7	28
54	Dual Switching in Both RAFT and ROP for Generation of Asymmetric A ² A ¹ B ¹ Type Tetrablock Quaterpolymers. Macromolecules, 2017, 50, 9295-9306.	2.2	27

#	Article	IF	CITATIONS
55	Polymerization of trimethylene carbonates using organic phosphoric acids. Polymer Chemistry, 2016, 7, 5526-5535.	1.9	26
56	Internal Lewis pair enhanced H-bond donor: boronate-urea and tertiary amine co-catalysis in ring-opening polymerization. Polymer Chemistry, 2016, 7, 6843-6853.	1.9	26
57	Continuous Electrochemical Synthesis of Isoâ€Coumarin Derivatives from <i>o</i> òa€(1â€Alkynyl) Benzoates under Metal―and Oxidantâ€Free. Chemistry - A European Journal, 2020, 26, 13738-13742.	1.7	26
58	Continuous flow photo-RAFT and light-PISA. Chemical Engineering Journal, 2021, 420, 127663.	6.6	26
59	Synthesis and discovery of andrographolide derivatives as non-steroidal farnesoid X receptor (FXR) antagonists. RSC Advances, 2014, 4, 13533-13545.	1.7	25
60	I ₂ -promoted aerobic oxidative coupling of acetophenes with amines under metal-free conditions: facile access to \hat{l} ±-ketoamides. RSC Advances, 2016, 6, 1503-1507.	1.7	25
61	Carbocation Organocatalysis in Interrupted Povarov Reactions to <i>cis</i> à€Fused Pyrano―and Furanobenzodihydropyrans. European Journal of Organic Chemistry, 2017, 2017, 3996-4003.	1,2	25
62	Improvement of <scp>l-</scp> citrulline production in <i>Corynebacterium glutamicum</i> by ornithine acetyltransferase. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 307-313.	1.4	24
63	A two-step continuous synthesis of α-ketoamides and α-amino ketones from 2° benzylic alcohols using hydrogen peroxide as an economic and benign oxidant. RSC Advances, 2016, 6, 25167-25172.	1.7	24
64	Amphiphilic star-shaped poly(sarcosine)-block-poly($\hat{l}\mu$ -caprolactone) diblock copolymers: one-pot synthesis, characterization, and solution properties. Journal of Materials Chemistry B, 2017, 5, 679-690.	2.9	24
65	Design, Synthesis, and Selfâ€Assembly of Janus Bottlebrush Polymers. Macromolecular Rapid Communications, 2020, 41, e2000357.	2.0	24
66	<i>N</i> -heterocyclic carbenes as organocatalysts in controlled/living ring-opening polymerization of <i>O</i> -carboxyanhydrides derived from <scp>l</scp> <i>-</i> lactic acid and <scp>l</scp> <i>-</i> mandelic acid. Journal of Polymer Science Part A, 2014, 52, 2306-2315.	2.5	23
67	Tripodal hydrogen bond donor binding with sulfonic acid enables ring-opening polymerization. Polymer Chemistry, 2016, 7, 1368-1374.	1.9	23
68	Organocatalyzed continuous flow ring-opening polymerizations to homo- and block-polylactones. Polymer, 2016, 84, 391-397.	1.8	23
69	Opposite-charge repulsive cation and anion pair cooperative organocatalysis in ring-opening polymerization. Polymer Chemistry, 2018, 9, 2183-2192.	1.9	23
70	Flame Retardancy and Mechanical Properties of Bioâ€Based Furan Epoxy Resins with High Crosslink Density. Macromolecular Materials and Engineering, 2020, 305, 1900587.	1.7	23
71	Catalyst- and oxidant-free electrochemical <i>para</i> -selective hydroxylation of <i>N</i> -arylamides in batch and continuous-flow. Green Chemistry, 2020, 22, 6437-6443.	4.6	23
72	Mild BrÃ, nsted acid initiated controlled polymerizations of 2-oxazoline towards one-pot synthesis of novel double-hydrophilic poly(2-ethyl-2-oxazoline)-block-poly(sarcosine). Polymer Chemistry, 2015, 6, 2970-2976.	1.9	22

#	Article	IF	Citations
73	Chemoselective polymerization platform for flow synthesis of functional polymers and nanoparticles. Chemical Engineering Journal, 2018, 333, 43-48.	6.6	22
74	A switch from anionic to bifunctional H-bonding catalyzed ring-opening polymerizations towards polyether–polyester diblock copolymers. Polymer Chemistry, 2018, 9, 154-159.	1.9	22
75	The continuous-flow electrosynthesis of 4-(sulfonylmethyl)isoquinoline-1,3(2 <i>H</i> ,4 <i>H</i>)-diones from <i>N</i> -alkyl- <i>N</i> -methacryloyl benzamides under metal-free and oxidant-free conditions. Organic Chemistry Frontiers, 2020, 7, 3223-3228.	2.3	22
76	The copper(<scp>ii</scp>)-catalyzed and oxidant-promoted regioselective C-2 difluoromethylation of indoles and pyrroles. Chemical Communications, 2020, 56, 8119-8122.	2.2	22
77	A Strained Ion Pair Permits Carbon Dioxide Fixation at Atmospheric Pressure by C–H H-Bonding Organocatalysis. Journal of Organic Chemistry, 2021, 86, 3422-3432.	1.7	22
78	Halide-free pyridinium saccharinate binary organocatalyst for the cycloaddition of CO2 into epoxides. Chemical Engineering Journal, 2022, 444, 135478.	6.6	22
79	Production of 100% bio-based semi-aromatic nylon by aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with bio aliphatic diamine. Chemical Engineering Journal, 2022, 437, 135361.	6.6	22
80	Studies on the lipase-catalyzed esterification of alkyl oleates in solvent-free systems. Journal of Molecular Catalysis B: Enzymatic, 2013, 90, 114-117.	1.8	21
81	A novel protocol to accelerate dynamic combinatorial chemistry via isolation of ligand–target adducts from dynamic combinatorial libraries: A case study identifying competitive inhibitors of lysozyme. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5174-5177.	1.0	21
82	Continuous synthesis of a co-doped TiO ₂ photocatalyst and its enhanced visible light catalytic activity using a photocatalysis microreactor. RSC Advances, 2015, 5, 54853-54860.	1.7	21
83	Sinterability, reducibility, and electrical conductivity of fast oxide-ion conductors La1.8R0.2MoWO9 (R=Pr, Nd, Gd and Y). Ceramics International, 2015, 41, 10208-10215.	2.3	21
84	Benzylation of heterocyclic N-oxides via direct oxidative cross-dehydrogenative coupling with toluene derivatives. New Journal of Chemistry, 2016, 40, 10227-10232.	1.4	21
85	Thiourea binding with carboxylic acid promoted cationic ring-opening polymerization. Polymer, 2016, 84, 293-303.	1.8	21
86	Continuous Flow Photoinduced Reversible Deactivation Radical Polymerization. ChemPhotoChem, 2018, 2, 831-838.	1.5	21
87	An efficient and green pathway for continuous Friedel-Crafts acylation over α-Fe2O3 and CaCO3 nanoparticles prepared in the microreactors. Chemical Engineering Journal, 2018, 331, 443-449.	6.6	21
88	New ultrastiff bio-furan epoxy networks with high Tg: Facile synthesis to excellent properties. European Polymer Journal, 2019, 121, 109292.	2.6	21
89	Photocatalytic radical defluoroalkylation of unactivated alkenes via distal heteroaryl ipso-migration. Communications Chemistry, 2020, 3, .	2.0	21
90	Biorenewable furan-containing polyamides. Materials Today Sustainability, 2020, 10, 100049.	1.9	21

#	Article	IF	CITATIONS
91	Highly Efficient and Selective Electrochemical Synthesis of Substituted Benzothiophenes and Benzofurans in Microcontinuous Flow. ACS Sustainable Chemistry and Engineering, 2020, 8, 13302-13309.	3.2	21
92	From Core–Shell to Yolk–Shell: Improved Catalytic Performance toward CoFe ₂ O ₄ @ Hollow@ Mesoporous TiO ₂ toward Selective Oxidation of Styrene. Industrial & Engineering Chemistry Research, 2020, 59, 19938-19951.	1.8	21
93	N-Heterocyclic olefins and thioureas as an efficient cooperative catalyst system for ring-opening polymerization of Î'-valerolactone. Polymer Chemistry, 2019, 10, 1832-1838.	1.9	20
94	Visibleâ€Lightâ€Mediated Sâ^'H Bond Insertion Reactions of Diazoalkanes with Cysteine Residues in Batch and Flow. Advanced Synthesis and Catalysis, 2020, 362, 5093-5104.	2.1	20
95	Two birds with one stone: The detection of nerve agents and AChE activity with an ICT-ESIPT-based fluorescence sensor. Journal of Hazardous Materials, 2021, 410, 124811.	6.5	20
96	Synthesis and application of a novel bio-based polyol for preparation of polyurethane foams. New Journal of Chemistry, 2014, 38, 3874.	1.4	19
97	Sn(OTf) < sub > 2 < /sub > catalyzed continuous flow ring-opening polymerization of $\hat{l}\mu$ -caprolactone. RSC Advances, 2015, 5, 31554-31557.	1.7	19
98	Highly chemoselective lipase from Candida sp. 99-125 catalyzed ring-opening polymerization for direct synthesis of thiol-terminated poly(É)-caprolactone). Chinese Chemical Letters, 2015, 26, 361-364.	4.8	19
99	Three is company: dual intramolecular hydrogen-bond enabled carboxylic acid active in ring-opening polymerization. Polymer Chemistry, 2016, 7, 1111-1120.	1.9	19
100	Organocatalyzed chemoselective ring-opening polymerizations. Scientific Reports, 2018, 8, 3734.	1.6	19
101	Food Sweetener Saccharin in Binary Organocatalyst for Bulk Ringâ€Opening Polymerization of Lactide. Advanced Synthesis and Catalysis, 2019, 361, 1335-1347.	2.1	19
102	Electrochemical Tri―and Difluoromethylationâ€Triggered Cyclization Accompanied by the Oxidative Cleavage of Indole Derivatives. Chemistry - A European Journal, 2021, 27, 6522-6528.	1.7	19
103	Continuous flow protecting-group-free synthetic approach to thiol-terminated poly(ε-caprolactone). European Polymer Journal, 2016, 80, 234-239.	2.6	18
104	A two-step continuous flow synthesis of 1,4-disubstituted 1,2,3-triazoles under metal- and azide-free conditions. RSC Advances, 2016, 6, 89073-89079.	1.7	18
105	Flow Reactor Synthesis of Bio-Based Polyol from Soybean Oil for the Production of Rigid Polyurethane Foam. Industrial & Description of Rig	1.8	18
106	Cationic ringâ€opening polymerization of trimethylene carbonate to α,ï‰â€dihydroxy telechelic and starâ€shaped polycarbonates catalyzed by reusable <i>o</i> àâ€benzenedisulfonimide. Journal of Polymer Science Part A, 2015, 53, 729-736.	2.5	17
107	Production of liquid hydrocarbon fuels with 3-pentanone and platform molecules derived from lignocellulose. RSC Advances, 2016, 6, 62974-62980.	1.7	17
108	Copper-catalyzed one-pot oxidative amidation of alcohol to amide via C–H activation. RSC Advances, 2016, 6, 89413-89416.	1.7	17

#	Article	IF	Citations
109	Highly efficient synthesis of \hat{l}^2 -nitrate ester carboxamides through the ring-opening of 2-oxazolines. Green Chemistry, 2017, 19, 5789-5793.	4.6	17
110	Facile pH-Dependent Synthesis and Characterization of Catechol Stabilized Silver Nanoparticles for Catalytic Reduction of 4-Nitrophenol. Catalysis Letters, 2017, 147, 2134-2143.	1.4	17
111	Visible-Light-Induced Trifluoromethylation/Cyclization of 1,7-Enynes in Continuous Flow. ACS Sustainable Chemistry and Engineering, 2020, 8, $11729-11736$.	3.2	17
112	C-5 selective chlorination of 8-aminoquinoline amides using dichloromethane. Organic and Biomolecular Chemistry, 2021, 19, 1352-1357.	1.5	17
113	Continuous-flow electro-oxidative coupling of sulfides with activated methylene compounds leading to sulfur ylides. Green Chemistry, 2021, 23, 2956-2961.	4.6	17
114	Synthesis of benzofuro- and benzothieno $[2,3-\langle i\rangle c\langle i\rangle]$ pyridines $\langle i\rangle via\langle i\rangle$ copper-catalyzed $[4+2]$ annulation of ketoxime acetates with acetoacetanilide. Organic Chemistry Frontiers, 2021, 8, 2939-2943.	2.3	17
115	Photoinduced Merging with Copper―or <scp>Nickelâ€Catalyzed</scp> 1, <scp>4â€Cyanoalkylarylation</scp> of 1, <scp>3â€Enynes</scp> to Access Multiple Functionalizatized Allenes in Batch and Continuous Flow. Chinese Journal of Chemistry, 2022, 40, 1537-1545.	2.6	17
116	Copperâ€"TEMPO-catalyzed synthesis of α-ketoamides via tandem sp ³ Câ€"H aerobic oxidation and amination of phenethyl alcohol derivatives. Organic and Biomolecular Chemistry, 2016, 14, 8570-8575.	1.5	16
117	Novel synthesis of a soy-based polyol for a polyurethane rigid foam. RSC Advances, 2016, 6, 90771-90776.	1.7	16
118	Chemoselective $C(\hat{l}_{\pm})$ $\hat{a} \in C(\hat{l}_{2})$ bond cleavage of saturated aryl ketones with amines leading to \hat{l}_{\pm} -ketoamides: a copper-catalyzed aerobic oxidation process with air. Organic Chemistry Frontiers, 2017, 4, 2375-2379.	2.3	16
119	Poly(vinylidene fluorideâ€∢i>coàê€chlorotrifluoroethylene) Modification via Organocatalyzed Atom Transfer Radical Polymerization. Macromolecular Rapid Communications, 2017, 38, 1700399.	2.0	16
120	Enzymatic Continuous Flow Synthesis of Thiolâ€Terminated Poly(δâ€Valerolactone) and Block Copolymers. Macromolecular Rapid Communications, 2018, 39, e1700807.	2.0	16
121	Dibutyl phosphate catalyzed commercial relevant ring-opening polymerizations to bio-based polyesters. European Polymer Journal, 2019, 113, 197-207.	2.6	16
122	Continuous-flow electrosynthesis of selenium-substituted iminoisobenzofuran <i>via</i> oxidative cyclization of olefinic amides and diselenides. Organic and Biomolecular Chemistry, 2021, 19, 3207-3212.	1.5	16
123	Chemoselective Polymerizations. Progress in Polymer Science, 2021, 117, 101397.	11.8	16
124	Copper-Catalyzed Three-Component Cascade Annulation for Divergent Syntheses of Imidazoles and Dihydroimidazoles. Organic Letters, 2022, 24, 1060-1065.	2.4	16
125	Electrochemical-Oxidation-Promoted Direct N-ortho-Selective Difluoromethylation of Heterocyclic <i>N</i> -Oxides. Organic Letters, 2022, 24, 1434-1438.	2.4	16
126	Oneâ€Pot Gloveboxâ€Free Synthesis, Characterization, and Selfâ€Assembly of Novel Amphiphilic Poly(Sarcosineâ€ <i>b</i> â€Caprolactone) Diblock Copolymers. Macromolecular Rapid Communications, 2014, 35, 1954-1959.	2.0	15

#	Article	IF	CITATIONS
127	2,4-Dinitrobenzenesulfonic acid in an efficient BrÃ,nsted acid-catalyzed controlled/living ring-opening polymerization of Îμ-caprolactone. RSC Advances, 2014, 4, 55716-55722.	1.7	15
128	Efficient synthesis of chromenopyridine and chromene via MCRs. Chinese Chemical Letters, 2014, 25, 1357-1362.	4.8	15
129	Two-Stage Flow Synthesis of Coumarin via <i>O</i> -Acetylation of Salicylaldehyde. Journal of Flow Chemistry, 2015, 5, 82-86.	1.2	15
130	Two-stage continuous flow synthesis of epoxidized fatty acid methyl esters in a micro-flow system. Chemical Engineering and Processing: Process Intensification, 2015, 96, 39-43.	1.8	15
131	Highly practical oxidation of benzylic alcohol in continuous-flow system with metal-free catalyst. Tetrahedron Letters, 2015, 56, 5973-5976.	0.7	15
132	Thiol-functionalized branched and linear poly ($\hat{l}\mu$ -caprolactone): Direct synthesis, characterization and application in stabilizing silver nanoparticles. Polymer, 2015, 80, 88-94.	1.8	15
133	Metallic organophosphate catalyzed bulk ring-opening polymerization. Polymer Chemistry, 2018, 9, 732-742.	1.9	15
134	Enzymeâ€Mediated In Situ Selfâ€Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angewandte Chemie, 2021, 133, 18230-18241.	1.6	15
135	Preparation of fluoroalkoxy or fluorophenoxy substituted N-heterocycles from heterocyclic <i>N</i> -oxides and polyfluoroalcohols. Organic Chemistry Frontiers, 2018, 5, 2340-2344.	2.3	15
136	Organocatalytic Electrosynthesis of Cinnolines through Cascade Radical Cyclization and Migration. ACS Sustainable Chemistry and Engineering, 2021, 9, 16989-16996.	3.2	15
137	Continuous flow photoinduced phenothiazine derivatives catalyzed atom transfer radical polymerization. European Polymer Journal, 2020, 126, 109565.	2.6	14
138	Photoinduced remote heteroaryl migration accompanied by cyanoalkylacylation in continuous flow. Green Chemistry, 2021, 23, 8916-8921.	4.6	14
139	Regioselective Synthesis of 3-Aminoimidazo[1,2- <i>a</i>]-pyrimidines under Continuous Flow Conditions. Journal of Organic Chemistry, 2014, 79, 10196-10202.	1.7	13
140	Dual Stimuliâ€Responsive Nanoparticles for Controlled Release of Anticancer and Antiâ€inflammatory Drugs Combination. Chemistry - A European Journal, 2017, 23, 9397-9406.	1.7	13
141	Guanidinium as bifunctional organocatalyst for ring-opening polymerizations. Polymer, 2018, 154, 17-26.	1.8	13
142	Microfluidic synthesis of fatty acid esters: Integration of dynamic combinatorial chemistry and scale effect. Chemical Engineering Journal, 2020, 381, 122721.	6.6	13
143	100% Bio-Based Polyamide with Temperature/Ultrasound Dually Triggered Reversible Cross-Linking. Industrial & Engineering Chemistry Research, 2020, 59, 13588-13594.	1.8	13
144	Recyclable polymer functionalization via end-group modification and block/random copolymerization. Green Energy and Environment, 2021, 6, 578-584.	4.7	13

#	Article	IF	CITATIONS
145	Cotton fabrics modified with Si@ hyperbranched poly(amidoamine): their salt-free dyeing properties and thermal behaviors. Cellulose, 2021, 28, 565-579.	2.4	13
146	N-Heterocyclic carbene-catalyzed radical ring-opening acylation of oxime esters with aldehydes. Organic Chemistry Frontiers, 2021, 8, 6074-6079.	2.3	13
147	Photomediated core modification of organic photoredox catalysts in radical addition: mechanism and applications. Chemical Science, 2021, 12, 9432-9441.	3.7	13
148	Continuous flow cationic polymerizations. Chemical Engineering Journal, 2022, 430, 132791.	6.6	13
149	Heteropoly acid-catalyzed three-component aza-Diels–Alder reaction in a continuous micro-flow system. RSC Advances, 2015, 5, 58798-58803.	1.7	12
150	Synthesis and characterization of star-branched polyamide 6 via anionic ring-opening polymerization with N , Nâ \in ² , Nâ \in ³ -trimesoyltricaprolactam as a multifunctional activator. Chinese Chemical Letters, 2015, 26, 1389-1392.	4.8	12
151	Tandem, Effective Continuous Flow Process for the Epoxidation of Cyclohexene. Industrial & Engineering Chemistry Research, 2016, 55, 1373-1379.	1.8	12
152	Amphiphilic Polyoxazolineâ€ <i>block</i> â€Polypeptoid Copolymers by Sequential Oneâ€Pot Ringâ€Opening Polymerizations. Macromolecular Chemistry and Physics, 2017, 218, 1600483.	1,1	12
153	Chlorotropylium Promoted Conversions of Oximes to Amides and Nitriles. European Journal of Organic Chemistry, 2020, 2020, 311-315.	1.2	12
154	The copper-catalyzed synthesis of dihydrooxazoles from \hat{l}_{\pm},\hat{l}^2 -unsaturated ketoximes and activated ketones. Chemical Communications, 2021, 57, 7272-7275.	2.2	12
155	Copper-catalyzed regioselective [3+2] annulation of malonate-tethered acyl oximes with isatins. Chemical Communications, 2021, 57, 3379-3382.	2.2	12
156	CF ₃ SO ₂ Na-Mediated Visible-Light-Induced Cross-Dehydrogenative Coupling of Heteroarenes with Aliphatic C(sp ³)â€"H Bonds. Organic Letters, 2022, 24, 3244-3248.	2.4	12
157	A two-step continuous flow synthesis of amides from alcohol using a metal-free catalyst. RSC Advances, 2015, 5, 95014-95019.	1.7	11
158	Sodium nitrite-promoted aerobic oxidative coupling of aryl methyl ketones with ammonium under metal-free conditions: a facile access to polysubstitution imidazoles. Organic Chemistry Frontiers, 2017, 4, 1508-1512.	2.3	11
159	Microfluidic synthesis of \hat{l}_{\pm} -ketoesters via oxidative coupling of acetophenones with alcohols under metal-free conditions. Reaction Chemistry and Engineering, 2017, 2, 650-655.	1.9	11
160	A preorganized dual H-bond donor promotes benzoic acid active in the polymerization of \hat{l} -valerolactone. Polymer Chemistry, 2017, 8, 5570-5579.	1.9	11
161	Copper(II) photoinduced graft modification of P(VDF- co -CTFE). European Polymer Journal, 2018, 100, 228-232.	2.6	11
162	Two-Step Continuous Synthesis of Dicarbonyl Indoles via I ₂ /DMSO-Promoted Oxidative Coupling: A Green and Practical Approach to Valuable Diketones from Aryl Acetaldehydes. ACS Sustainable Chemistry and Engineering, 2018, 6, 7979-7988.	3.2	11

#	Article	IF	Citations
163	Cu/Pd-Catalyzed chemoselective synthesis of C-3 dicarbonyl indoles and bis(indolyl)alkanes from aldehydes and indoles. Organic Chemistry Frontiers, 2019, 6, 627-631.	2.3	11
164	An Electrochemical Route for Special Oxidative Ringâ€Opening of Indoles. Chemistry - A European Journal, 2021, 27, 13024-13028.	1.7	11
165	Halogen bonding catalysis for the [3+2] cycloaddition reactions of epoxides with CO2, and other heterocumulenes. Journal of CO2 Utilization, 2021, 52, 101663.	3.3	11
166	Biocatalysts used for multi-step reactions in continuous flow. Chemical Engineering Journal, 2022, 437, 135400.	6.6	11
167	Rigid Polyurethane Foam Based on Modified Soybean Oil. Advanced Materials Research, 0, 724-725, 1681-1684.	0.3	10
168	Highly practical sodium(<scp>i</scp>)/azobenzene catalyst system for aerobic oxidation of benzylic alcohols. RSC Advances, 2015, 5, 79699-79702.	1.7	10
169	C3 Alkylation of Indoles Catalyzed by Carbocations under Continuousâ€Flow Conditions. Asian Journal of Organic Chemistry, 2016, 5, 920-926.	1.3	10
170	Tunable intramolecular H-bonding promotes benzoic acid activity in polymerization: inspiration from nature. Polymer Chemistry, 2017, 8, 6398-6406.	1.9	10
171	Palladium-Catalyzed C2-Regioselective Perfluoroalkylation of the Free (NH)-Heteroarenes. Journal of Organic Chemistry, 2021, 86, 2840-2853.	1.7	10
172	Metal-Free C–C Cross Coupling: Electrosynthesis of Azaheterocycles through Anodic Oxidation Cyclization of 1,6-Enynes. ACS Sustainable Chemistry and Engineering, 2022, 10, 3288-3294.	3.2	10
173	Influence of receptor flexibility on intramolecular H-bonding interactions. Organic and Biomolecular Chemistry, 2015, 13, 8053-8066.	1.5	9
174	Copper-catalyzed one-pot oxidative amidation between methylarenes and amines. RSC Advances, 2017, 7, 22797-22801.	1.7	9
175	H-bonding binary organocatalysis promoted amine-initiated ring-opening polymerizations of lactide from polysarcosine to diblock copolymers. European Polymer Journal, 2017, 97, 389-396.	2.6	9
176	Photoinduced Cu(II)-Mediated RDRP to P(VDF-co-CTFE)-g-PAN. Polymers, 2018, 10, 68.	2.0	9
177	Oxidative Thioesterification of Alkenes Mediated by 1,3â€Dibromoâ€5,5â€dimethylhydantoin and DMSO for the Synthesis of αâ€Ketothioesters. European Journal of Organic Chemistry, 2019, 2019, 4056-4060.	1.2	9
178	Microfluidic synthesis of pyrrolidin-2-ones <i>via</i> photoinduced organocatalyzed cyclization of styrene, α-bromoalkyl esters and primary amines. Organic and Biomolecular Chemistry, 2021, 19, 6468-6472.	1.5	9
179	The sunlight-promoted aerobic selective cyclization of olefinic amides and diselenides. Catalysis Science and Technology, 2021, 11, 2299-2305.	2.1	9
180	Copper-catalyzed [4+2] oxidative annulation of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chemical Communications, 2022, 58, 6757-6760.	2.2	9

#	Article	IF	CITATIONS
181	Direct oxidative amination of aromatic aldehydes with amines in a continuous flow system using a metal-free catalyst. RSC Advances, 2016, 6, 72121-72126.	1.7	8
182	Identification of inhibitors for vascular endothelial growth factor receptor by using dynamic combinatorial chemistry. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1671-1674.	1.0	8
183	Direct synthesis of thiol-terminated poly(Îμ-caprolactone): a study on polymerization kinetics, mechanism and rare earth phenolates' structure–activity relationship. RSC Advances, 2017, 7, 37412-37418.	1.7	8
184	An efficient synthesis of N-substituted phthalimides using SiO2-tpy-Nb as heterogeneous and reusable catalyst. Catalysis Communications, 2017, 88, 30-34.	1.6	8
185	Continuous synthesis and anti-myocardial injury of tanshinone IIA derivatives. Journal of Asian Natural Products Research, 2018, 20, 139-147.	0.7	8
186	Advances in Organocatalyzed Atom Transfer Radical Polymerization. Advances in Polymer Technology, 2019, 1-9.	0.8	8
187	4,5-Dioxo-imidazolinium Cation Activation of 1-Acyl-1-carbamoyl Oximes: Access to Cyanoformamides Using Dichloroimidazolidinedione. Journal of Organic Chemistry, 2020, 85, 1087-1096.	1.7	8
188	Copperâ€Catalyzed [3+2] Annulation of 2â€Arylideneâ€1,3â€Indandiones with Nâ€Acetyl Enamides for the Synthesis of Spiropyrrolines. Advanced Synthesis and Catalysis, 2020, 362, 695-699.	2.1	8
189	Tetrabutylammonium fluoride initiated anionic ring-opening polymerizations of N–sulfonyl aziridines. European Polymer Journal, 2020, 140, 109999.	2.6	8
190	Biocompatible and low-cost pyridinium halides catalysts promoted ring-opening polymerizations of cyclic esters in bulk. European Polymer Journal, 2020, 127, 109570.	2.6	8
191	Photomediated Spirocyclization of <i>N</i> Benzyl Propiolamide with <i>N</i> lodosuccinimide for Access to Azaspiro[4.5]deca-6,9-diene-3,8-dione. Journal of Organic Chemistry, 2022, 87, 8445-8457.	1.7	8
192	Design and optimization of a novel ellipsoidal baffle mixer with high mixing efficiency and low pressure drop. Journal of Chemical Technology and Biotechnology, 2022, 97, 3121-3131.	1.6	8
193	Optimization of biodiesel production by continuous microflow system with online separation. Monatshefte FÃ $^1\!\!/\!4$ r Chemie, 2014, 145, 223-227.	0.9	7
194	Fully Automated Continuous Meso-flow Synthesis of $5\hat{a}\in ^2$ -Nucleotides and Deoxynucleotides. Organic Process Research and Development, 2014, 18, 1575-1581.	1.3	7
195	Ring-opening polymerization of É>-caprolactone catalyzed by a novel lipase <i>Candida</i> sp. 99-125. Biocatalysis and Biotransformation, 2015, 33, 150-155.	1.1	7
196	Epoxidation of Methyl Oleate and Subsequent Ringâ€Opening Catalyzed by Lipase from <i>Candida</i> sp. 99–125. European Journal of Lipid Science and Technology, 2018, 120, 1700257.	1.0	7
197	Silver(<scp>i</scp>)-mediated oxidative C(sp ³)â€"H amination of ethers with azole derivatives under mild conditions. Organic Chemistry Frontiers, 2019, 6, 2672-2677.	2.3	7
198	The ruthenium-catalyzed <i>meta</i> -selective Câ€"H nitration of various azole ring-substituted arenes. Organic and Biomolecular Chemistry, 2019, 17, 9065-9069.	1.5	7

#	Article	IF	CITATIONS
199	Cu-catalyzed \hat{l}^2 -functionalization of saturated ketones with indoles: a one-step synthesis of C3-substituted indoles. RSC Advances, 2016, 6, 89181-89184.	1.7	6
200	Continuous synthesis of ginkgolide B derivatives in a micro-flow system. Tetrahedron Letters, 2016, 57, 1243-1246.	0.7	6
201	Metalâ€Free Amineâ€Mediated Oxidative Synthesis of Polysubstituted Imidazoles from Aryl Methyl Ketones, Ammonium Iodide or Benzylamine, and Hydrogen Peroxide. Asian Journal of Organic Chemistry, 2017, 6, 1104-1109.	1.3	6
202	Microfluidic Synthesis of <i>tert</i> -Butyl Peresters via KI-Catalyzed Oxidative Coupling of Methyl Arenes and <i>tert</i> -Butyl Hydroperoxide. Organic Process Research and Development, 2017, 21, 1633-1637.	1.3	6
203	Synthesis of Tertiary Aromatic Amides from Tertiary Benzylamines via TBAI/TBHPâ€Mediated Câ€Nâ€Bond Cleavage. ChemistrySelect, 2019, 4, 3500-3504.	0.7	6
204	Continuous flow rare earth phenolates catalyzed chemoselective ring-opening polymerization. Chemical Engineering Science, 2020, 211, 115290.	1.9	6
205	Carboxylic modification of welan gum. Journal of Applied Polymer Science, 2020, 137, 48301.	1.3	6
206	Continuous and green microflow synthesis of azobenzene compounds catalyzed by consecutively prepared tetrahedron CuBr. Dyes and Pigments, 2020, 174, 108071.	2.0	6
207	Continuous-flow processes for the <i>S</i> -alkynylation of cysteine-containing peptides and thioglycosides under catalyst-free, oxidant-free and mild conditions. Green Chemistry, 2021, 23, 6598-6603.	4.6	6
208	Visible light-promoted aerobic oxidative cleavage and cyclization of olefins to access 3-hydroxy-isoindolinones. Organic Chemistry Frontiers, 2021, 9, 25-31.	2.3	6
209	A genuine H-bond donor and Lewis base amine cocatalyst in ring-opening polymerizations. European Polymer Journal, 2021, 143, 110184.	2.6	6
210	Access to high-molecular-weight poly (\hat{l}^3 -butyrolactone) by using simple commercial catalysts. Polymer Chemistry, 2022, 13, 439-445.	1.9	6
211	Metal-free oxidative esterification of acetophenones with alcohols: a facile one-pot approach to \hat{l}_{\pm} -ketoesters. RSC Advances, 2016, 6, 98422-98426.	1.7	5
212	Copper-catalyzed aerobic oxidative coupling of terminal alkynes with $\hat{l}\pm$ -carbonyl aldehydes: An expedient approach toward ynediones. Tetrahedron Letters, 2019, 60, 150914.	0.7	5
213	Microflow-based dynamic combinatorial chemistry: a microscale synthesis and screening platform for the rapid and accurate identification of bioactive molecules. Reaction Chemistry and Engineering, 2019, 4, 658-662.	1.9	5
214	Cyclopropenium-Activated DMSO for Swern-Type Oxidation. Synlett, 2019, 30, 329-332.	1.0	5
215	Tuning the H-bond donicity boosts carboxylic acid efficiency in ring-opening polymerization. European Polymer Journal, 2019, 112, 799-808.	2.6	5
216	Tunable hydantoin and base binary organocatalysts in ring-opening polymerizations. Polymer Chemistry, 2020, 11, 5669-5680.	1.9	5

#	Article	IF	Citations
217	Visible-light-promoted N-centered radical generation for remote heteroaryl migration. Organic and Biomolecular Chemistry, 2020, 18, 7663-7670.	1.5	5
218	Non-metal with metal behavior: metal-free coordination-insertion ring-opening polymerization. Chemical Science, 2021, 12, 10732-10741.	3.7	5
219	Polybenzoxazine intrinsically installed N-methylpyridinium iodide functions efficient organocatalyst for CO2 fixation into cyclic carbonate. European Polymer Journal, 2021, 149, 110397.	2.6	5
220	Electrochemical Synthesis of Seleniumâ€substituted Benzoxazine <i>via</i> Radical Initiated Cyclization. ChemElectroChem, 2021, 8, 4091-4095.	1.7	5
221	Microreactor-based chemo-enzymatic ROP-ROMP platform for continuous flow synthesis of bottlebrush polymers. Chemical Engineering Journal, 2022, 437, 135284.	6.6	5
222	Identification of competitive inhibitors for bovine serum albumin from dynamic combinatorial libraries containing a bienzyme system. RSC Advances, 2015, 5, 23224-23228.	1.7	4
223	Total Synthesis of Evelynin B and Taccabulin D. Journal of Chemical Research, 2015, 39, 458-461.	0.6	4
224	Dehydrogenative etherification homocoupling of heterocyclic N-oxides. Tetrahedron Letters, 2018, 59, 1752-1756.	0.7	4
225	Copper(I) Iodide-Catalyzed (Het)arylation of Diethyl Malonate with (Het)aryl Bromides by Using 1,3-Benzoxazole as a Ligand. Synlett, 2018, 29, 79-84.	1.0	4
226	KI-Promoted Oxidative Coupling of Styrenes with Indoles under Metal-Free Conditions: Facile Access to C-3 Dicarbonyl Indoles. Synthesis, 2019, 51, 3511-3519.	1.2	4
227	Synthesis and scale-up of water-soluble quaternary cationic monomers in a continuous flow system. Reaction Chemistry and Engineering, 2019, 4, 919-926.	1.9	4
228	Synthesis of Phenanthridinones by Palladium-Catalyzed Cyclization of N-Aryl-2-aminopyridines with 2-lodobenzoic Acids in Water. Synlett, 2020, 31, 280-284.	1.0	4
229	Mechanistic Study of Unprecedented Highly Regioselective Hydrocyanation of Terminal Alkynes: Insight into the Origins of the Regioselectivity and Ligand Effects. Journal of Computational Chemistry, 2020, 41, 279-289.	1.5	4
230	Cu-Catalyzed aerobic oxidative cleavage of C(sp3)–C(sp3) bond: Synthesis of α-ketoamides. Tetrahedron Letters, 2020, 61, 152555.	0.7	4
231	Organomagnesium towards efficient synthesis of recyclable polymers. European Polymer Journal, 2020, 130, 109659.	2.6	4
232	Merging of cationic RAFT and radical RAFT polymerizations with ring-opening polymerizations for the synthesis of asymmetric ABCD type tetrablock copolymers in one pot. Polymer Chemistry, 2021, 12, 4974-4985.	1.9	4
233	Protecting-group-free synthesis of thiol-functionalized degradable polyesters. Polymer Chemistry, 2021, 12, 1749-1757.	1.9	4
234	Fully Chemical Recyclable Poly (\hat{l}^3 -butyrolactone)-based Copolymers with Tunable Structures and Properties. Chinese Journal of Polymer Science (English Edition), 2022, 40, 456-461.	2.0	4

#	Article	IF	CITATIONS
235	Electrochemical Oxidative <i>ortho</i> â€Selective Trifluoromethylation of <i>N</i> â€Arylamides. ChemElectroChem, 2022, 9, .	1.7	4
236	Electrooxidative $[3\hat{a}\in +\hat{a}\in 2]$ annulation of amidines with alkenes for the synthesis of spiroimidazolines. Chinese Chemical Letters, 2022, 33, 5128-5131.	4.8	4
237	Synthesis of 2,4,6â€Trisubstituted Pyrimidines via Ironâ€Catalyzed Homocoupling of <i>α</i> , <i>β</i> å€Unsaturated Ketoximes. Advanced Synthesis and Catalysis, 2022, 364, 2654-2659.	2.1	4
238	Concise Total Synthesis of Aplysinellamides A and B. Journal of Chemical Research, 2015, 39, 336-339.	0.6	3
239	A Two-Step Continuous Flow Synthesis of 4-Nitropyridine. Journal of Chemical Research, 2015, 39, 209-212.	0.6	3
240	AIBN/NaBr-promoted aerobic oxidation of benzylic alcohols via a radical process. Organic and Biomolecular Chemistry, 2016, 14, 577-581.	1.5	3
241	Cuâ€Catalyzed Synthesis of Câ€3 Dicarbonyl Indoles via Aerobic Oxidative Coupling of Acetophenones with Indoles. Asian Journal of Organic Chemistry, 2017, 6, 1365-1369.	1.3	3
242	Nâ∈Heterocyclicâ∈Carbeneâ∈Catalyzed Redox Lactonization of <i>o</i> â∈Hydroxycinnamaldehydes and <i>o</i> â∈Hydroxycinnamyl Alcohols to Coumarins. Asian Journal of Organic Chemistry, 2017, 6, 1724-1727.	1.3	3
243	Continuous preparation for rifampicin. Journal of Flow Chemistry, 2018, 8, 129-138.	1.2	3
244	Regioselective Chlorination of Quinoline Derivatives via Fluorine Mediation in a Microfluidic Reactor. ChemistrySelect, 2018, 3, 10689-10693.	0.7	3
245	Enzymatic electrochemical continuous flow cascade synthesis of substituted benzimidazoles. Reaction Chemistry and Engineering, 2021, 6, 937-943.	1.9	3
246	Pharmacokinetics, Metabolism and Disposition of [14C]XQ-1H After Intravenous Administration to Male Rats. Drug Metabolism Letters, 2017, 10, 228-239.	0.5	3
247	Anionic polymerizations in a microreactor. Reaction Chemistry and Engineering, 2022, 7, 1026-1036.	1.9	3
248	Sustainable Indicators Based on Furfural-Derived Colorant-Doped Biobased Polyurethane to Improve Food Safety. ACS Sustainable Chemistry and Engineering, 2022, 10, 8624-8630.	3.2	3
249	A Novel and Practical Synthesis of Rimonabant Hydrochloride. Organic Preparations and Procedures International, 2012, 44, 164-168.	0.6	2
250	Synthesis and application of a novel lysine-based polyol for preparation of polyurethane. Monatshefte FA1/4r Chemie, 2014, 145, 79-84.	0.9	2
251	Concise Total Synthesis of 1,3-Diphenylpropane Derivatives Griffithanes A, B and F. Journal of Chemical Research, 2015, 39, 416-420.	0.6	2
252	Continuous Synthesis of Cyclohexene Oxide in a Microâ€FlowSystem. ChemistrySelect, 2018, 3, 13530-13533.	0.7	2

#	Article	IF	CITATIONS
253	BrÃ,nsted base mediated one-pot synthesis of catechol-ended amphiphilic polysarcosine- <i>b</i> -poly(<i>N</i> -butyl glycine) diblock copolypeptoids. Pure and Applied Chemistry, 2019, 91, 363-374.	0.9	2
254	Two-step continuous flow synthesis of amide via oxidative amidation of methylarene. Tetrahedron, 2020, 76, 131044.	1.0	2
255	The integration of catalyst design and process intensification in the efficient synthesis of 5-hydroxymethyl-2-furancarboxylic acid from fructose. Chemical Engineering Science, 2021, 245, 116858.	1.9	2
256	Enzymatic kinetic resolution in flow for chiral mandelic acids. Journal of Flow Chemistry, 2022, 12, 227-235.	1.2	2
257	An efficient etherification of Ginkgol biloba extracts with fewer side effects in a micro-flow system. Chinese Chemical Letters, 2016, 27, 1644-1648.	4.8	1
258	Methoxylation and Direct Hydrogenative Coupling of Chloronitrobenzenes in Continuous Flow. Chinese Journal of Chemistry, 2017, 35, 410-414.	2.6	1
259	Design, synthesis and properties investigation of $\langle i \rangle N \langle i \rangle \langle \sup \rangle \hat{l}_{\pm} \langle \sup \rangle$ -acylation lysine based derivatives. RSC Advances, 2019, 9, 7587-7593.	1.7	1
260	Regioselective C3-Fluoroalcoholation of Indoles with Heptafluoroisopropyl Iodide via Palladium-Catalyzed C(sp ²)–C(sp ³) Cross-Coupling in the Presence of O ₂ . Journal of Organic Chemistry, 2022, 87, 9128-9138.	1.7	1
261	Crystal structure of (Z)-2-amino-4-(2-amino-2-(4-bromophenylthio)-1-cyanovinyl)-6-bromo-4H-chromene-3-carbonitrile, C19H12Br2N4OS. Zeitschrift Fur Kristallographie - New Crystal Structures, 2013, 228, 351-352.	0.1	0
262	Crystal structure of 2,2-dimethyl-1-(6-nitro-1H-indazol-1-yl)propan-1- one, C12H13N3O3. Zeitschrift Fur Kristallographie - New Crystal Structures, 2013, 228, 77-78.	0.1	0
263	Crystal structure of triethyl(5-benzoyl-1H-pyrrol-2-yl)methanetricarboxylate, C21H23NO7. Zeitschrift Fur Kristallographie - New Crystal Structures, 2014, 229, 95-96.	0.1	0
264	Crystal structure of 2-[2-(4-chloro-phenyl)-acetylamino]-3-(3,4- dimethoxyphenyl)propionic acid methyl ester, C20H22ClNO5. Zeitschrift Fur Kristallographie - New Crystal Structures, 2014, 229, 277-278.	0.1	0
265	Crystal structure of 4-chloro-3'-methoxy-[1,1'-biphenyl]-3-carbaldehyde, C14H11ClO2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2015, 230, 205-206.	0.1	0
266	Crystal structure of hexahydro-3-[(phenylmethyl)amino]-2H-azepin-2- one, C13H18N2O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2015, 230, 209-210.	0.1	0
267	Crystal structure of 3-(benzoylamino)azepan-2-one, C13H16N2O2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2015, 230, 207-208.	0.1	0
268	1,3-Dibromo-5,5-dimethylhydantoin (DBH)/DMSO mediated oxidative difunctionalization of styrenes: Microfluidic synthesis of pentafluorophenoxy ketone. Tetrahedron Letters, 2021, 67, 152876.	0.7	0
269	A Novel Synthetic Method for 1-(2,4-Dichlorophenyl)-4-methyl-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylic Acid. Chinese Journal of Organic Chemistry, 2013, 33, 607.	0.6	0
270	2-[(5-Methylthiophen-2-yl)methylidene]malononitrile. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1003-o1003.	0.2	0

#	Article	IF	CITATIONS
271	Mechanistic study of cobalt(I) atalyzed asymmetric coupling of ethylene and enynes to functionalized cyclobutanes. Journal of Computational Chemistry, 2022, 43, 440-447.	1.5	O